兩類廣義多乘積規(guī)劃問題的優(yōu)化算法
[Abstract]:As an important optimization problem, non-convex programming problem can be widely used in many important fields, such as economy and finance, information technology, industrial manufacturing and so on. In general, there are many non-global optimal local optimal solutions for this kind of problems, so it is very difficult to find their global optimal solutions. Because of the wide application of non-convex optimization problem in real life, more and more researchers pay attention to it in recent years, and some optimization methods have been proposed one after another. In this paper, two kinds of generalized multi-product programming problems in non-convex optimization problems are proposed. Compared with the existing methods, the proposed branch-and-bound algorithm and iterative algorithm not only guarantee the quality of the optimal solution, but also greatly improve its execution efficiency. The main contents are as follows: in the first chapter, the optimization model studied in this paper is given. Secondly, the application background, theoretical significance and current research work of the optimization problem are briefly introduced. Finally, the main work of this paper is presented. In chapter 2, according to the characteristics of generalized linear multiple product optimization problem, a new branch and bound algorithm is proposed. First, the equivalent problem of the original problem is obtained by introducing variables, and then the equivalent problem is transformed into a convex programming problem by using convex relaxation technique. Then a series of convex programming problems are solved based on a new branching rule to obtain the global optimal solution of the original problem. Finally, the global convergence of the algorithm is proved theoretically. Numerical results show that this algorithm has some advantages in solving generalized linear multiple product programming problems. Chapter 3 An iterative algorithm is proposed for generalized polynomial product optimization. The generalized geometric programming problem equivalent to the original problem is obtained by introducing variables, and then the generalized geometric programming problem is transformed into a standard geometric programming form by using the arithmetic-geometric mean inequality and penalty function. Then the optimal solution of the original problem is obtained by solving a series of standard geometric programming problems. Finally, the convergence of the iterative algorithm is given. Numerical results show that the algorithm is effective and feasible.
【學(xué)位授予單位】:河南師范大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:O221
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 畢予華;廣義幾何規(guī)劃最優(yōu)解的必要條件[J];許昌學(xué)院學(xué)報;2003年02期
2 隋允康,耿樹森;廣義幾何規(guī)劃二階縮并的原算法及其在結(jié)構(gòu)優(yōu)化中的應(yīng)用*[J];計(jì)算結(jié)構(gòu)力學(xué)及其應(yīng)用;1985年01期
3 喬立南;孫國正;;廣義幾何規(guī)劃在起重機(jī)結(jié)構(gòu)優(yōu)化設(shè)計(jì)中的應(yīng)用[J];武漢水運(yùn)工程學(xué)院學(xué)報;1985年02期
4 隋允康,由衷;廣義幾何規(guī)劃的完全二階原算法[J];計(jì)算結(jié)構(gòu)力學(xué)及其應(yīng)用;1988年04期
5 張可村,王燕軍;混合約束下廣義幾何規(guī)劃的一種全局收斂算法[J];計(jì)算數(shù)學(xué);2002年01期
6 王燕軍,張可村;廣義幾何規(guī)劃的壓縮信賴域算法[J];應(yīng)用數(shù)學(xué)學(xué)報;2004年03期
7 焦紅偉;任勤;;求廣義幾何規(guī)劃全局解的近似算法[J];河南師范大學(xué)學(xué)報(自然科學(xué)版);2007年03期
8 曹香蓮;李燦;;廣義幾何規(guī)劃的一類全局收斂算法[J];成都大學(xué)學(xué)報(自然科學(xué)版);2010年03期
9 景書杰;韓學(xué)鋒;;無約束廣義幾何規(guī)劃的一種具有全局收斂性的線性松弛方法[J];河南理工大學(xué)學(xué)報(自然科學(xué)版);2011年01期
10 靳利;劉慧芳;裴永剛;;帶自由變量的廣義幾何規(guī)劃全局求解的新算法[J];數(shù)學(xué)的實(shí)踐與認(rèn)識;2012年12期
相關(guān)會議論文 前2條
1 黨亞崢;王科峰;景書杰;;廣義幾何規(guī)劃的壓縮共軛梯度路徑信賴域算法[A];中國運(yùn)籌學(xué)會第九屆學(xué)術(shù)交流會論文集[C];2008年
2 張可村;王燕軍;;混合約束下廣義幾何規(guī)劃的一種全局收斂算法[A];西部大開發(fā) 科教先行與可持續(xù)發(fā)展——中國科協(xié)2000年學(xué)術(shù)年會文集[C];2000年
相關(guān)博士學(xué)位論文 前3條
1 夏穎;WLAN室內(nèi)半監(jiān)督定位及指紋更新算法研究[D];哈爾濱工業(yè)大學(xué);2016年
2 戴震龍;幾類問題基于自然邊界歸化的算法研究[D];南京師范大學(xué);2017年
3 吳珊珊;數(shù)據(jù)流頻繁項(xiàng)挖掘及相關(guān)性分析算法的研究[D];浙江大學(xué);2017年
相關(guān)碩士學(xué)位論文 前10條
1 韋陽陽;兩類廣義多乘積規(guī)劃問題的優(yōu)化算法[D];河南師范大學(xué);2017年
2 李曉萍;有約束條件優(yōu)化問題的MM算法[D];蘭州大學(xué);2017年
3 張曉丹;WSN中基于改進(jìn)粒子群優(yōu)化算法的分簇拓?fù)渌惴ㄑ芯縖D];鄭州大學(xué);2017年
4 杜仲平;基于嵌入式的嬰兒哭聲報警算法研究[D];天津大學(xué);2016年
5 馬霜遜;基于標(biāo)簽傳播的PU學(xué)習(xí)算法研究[D];蘭州大學(xué);2017年
6 韓學(xué)鋒;廣義幾何規(guī)劃理論算法研究[D];河南理工大學(xué);2011年
7 金花;解無約束廣義幾何規(guī)劃[D];南京師范大學(xué);2005年
8 王燕;廣義幾何規(guī)劃問題的幾個有效算法[D];南京師范大學(xué);2007年
9 馬琳;廣義幾何規(guī)劃的全局優(yōu)化算法研究[D];重慶大學(xué);2013年
10 曾凡文;求解廣義幾何規(guī)劃問題的兩種全局優(yōu)化方法[D];河南師范大學(xué);2011年
,本文編號:2288048
本文鏈接:http://www.lk138.cn/kejilunwen/yysx/2288048.html