基于模糊理論的時(shí)間序列預(yù)測研究
[Abstract]:Because the time series prediction can provide good decision support for people, it has been widely used in many fields. In order to be able to predict incomplete and ambiguous data, a fuzzy time series is proposed. With the advent of data age, time series and fuzzy time series model have been paid more and more attention. Based on the research of fuzzy time series and time series prediction model, some new results and research methods are obtained, including the following aspects: 1. With the in-depth development of information, too much emphasis is placed on the accuracy and the poor prediction model can not completely meet the actual application needs of time series prediction. There is an urgent need to propose a temporal sequence prediction model with high accuracy and an interpretable temporal sequence. In view of the above problems, a fuzzy time series prediction model based on automatic clustering and axiomatic fuzzy sets is proposed. The model utilizes the automatic clustering algorithm to generate different length division intervals according to the distribution of the samples, and overcomes the defect of the length of the static interval. The semantic interpretation of fuzzy tendency is generated by AFS classifier, which makes the prediction model easier to understand. Fuzzy trends can be obtained in the prediction process, which provides a reliable basis for decision makers. Then, combining fuzzy time series and classical time series analysis, a fuzzy time series prediction model based on trend prediction and autoregressive model is proposed. The model can dig a significant change trend in the time series, and use the AR (2) model to determine the fluctuation of the prediction data, so as to obtain the final forecast value. The two fuzzy time series prediction models are respectively applied to the real time series, and the experimental results are compared with other similar prediction models, and a better prediction result is obtained. Two single-step time series prediction models are proposed in combination with fuzzy data mining and fuzzy clustering. In the first model, according to the principle of closer relationship between the new occurrence and the present relationship, the sub-sequence of the last sub-sequence is determined by using the affine propagation algorithm so as to determine the category to which the last sub-sequence belongs, i.e. to find the sub-sequence class closest to the predicted sample relation. On this basis, the fuzzy data mining technology is used to generate semantic rules, and the obtained rules are used for prediction, which makes the prediction process more transparent and easier to understand. In the second model, a new time series prediction model is proposed in combination with fuzzy clustering. Firstly, in order to overcome the limitation of the traditional clustering algorithm on the data dimension, the similarity between the time series can be more accurately measured, and a dynamic bending-based fuzzy C-means clustering algorithm is proposed. Then, the time series data constructed by this algorithm is used to gather the data, and the prediction is carried out according to the result of the poly. Both single-step time series prediction models are applied to the Taiwan stock index time series. The experimental results show the validity of the model and get better prediction results than those of the same model. With the in-depth study, multi-step prediction has more important theoretical and practical value than single-step prediction. A multi-step (long-term) time series prediction model is proposed based on information particle and fuzzy clustering. Information Granularization divides the time sequence (abstracted) into a number of meaningful controllable information particles, which render the time series presented in a more understandable way. Therefore, using the information grain structure time series prediction model, the prediction model has interpretability. Because the prediction model is multi-step prediction, a plurality of prediction values can be predicted at one time, repeated iterations are not needed, and the calculation time is greatly reduced. In this paper, the application process of the prediction model is presented in a synthetic time series as an example, and the feasibility of the model is verified. The model is applied to several sets of real time series, and the experimental results show the superiority of the model.
【學(xué)位授予單位】:大連理工大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:O211.61
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 吳鵬;劉振;陳月輝;;基于神經(jīng)樹的時(shí)間序列預(yù)測[J];山東科學(xué);2007年01期
2 沈浩;鄧夢曦;;預(yù)則立——時(shí)間序列預(yù)測技術(shù)之廣電業(yè)務(wù)應(yīng)用[J];中國數(shù)字電視;2011年10期
3 許繼平;劉載文;那靖;;司法消噪與多技術(shù)融合的時(shí)間序列預(yù)測[J];計(jì)算機(jī)工程與應(yīng)用;2010年24期
4 王剛,胡德文;基于時(shí)間序列預(yù)測的獨(dú)立分量排序[J];國防科技大學(xué)學(xué)報(bào);2005年05期
5 楊久婷;張海望;;基于小波分解與自回歸樹的時(shí)間序列預(yù)測新方法[J];科技信息;2009年31期
6 張弦;王宏力;;具有選擇與遺忘機(jī)制的極端學(xué)習(xí)機(jī)在時(shí)間序列預(yù)測中的應(yīng)用[J];物理學(xué)報(bào);2011年08期
7 邢蕾;;基于小波分析時(shí)間序列預(yù)測技術(shù)進(jìn)展[J];吉林金融研究;2009年04期
8 肖凡;馬捷中;任嵐昆;;基于小波分析與支持向量機(jī)的時(shí)間序列預(yù)測[J];航空計(jì)算技術(shù);2011年06期
9 楊玫;趙秀麗;劉瑜;;時(shí)間序列預(yù)測問題中小波分解的應(yīng)用研究[J];信息技術(shù)與信息化;2011年02期
10 丁紅;武招云;龔若愚;廖文凱;;小波分析在徑流時(shí)間序列預(yù)測的應(yīng)用[J];柳州師專學(xué)報(bào);2012年03期
相關(guān)會議論文 前4條
1 陳宇;唐常杰;鐘義嘯;段磊;喬少杰;普東航;;基于基因表達(dá)式編程和時(shí)變強(qiáng)度的時(shí)間序列預(yù)測[A];第二十二屆中國數(shù)據(jù)庫學(xué)術(shù)會議論文集(技術(shù)報(bào)告篇)[C];2005年
2 王亮;鐘登華;葛曉冬;;預(yù)測方法綜述[A];全國青年管理科學(xué)與系統(tǒng)科學(xué)論文集(第1卷)[C];1991年
3 尤華;王建東;;機(jī)場噪聲的時(shí)間序列預(yù)測[A];2011年通信與信息技術(shù)新進(jìn)展——第八屆中國通信學(xué)會學(xué)術(shù)年會論文集[C];2011年
4 王棟;陳勇;徐建良;;基于預(yù)測的BitTorrent種子評估方法[A];2008'中國信息技術(shù)與應(yīng)用學(xué)術(shù)論壇論文集(二)[C];2008年
相關(guān)博士學(xué)位論文 前5條
1 王威娜;基于模糊理論的時(shí)間序列預(yù)測研究[D];大連理工大學(xué);2016年
2 張冬青;非線性非高斯時(shí)間序列預(yù)測研究[D];南京航空航天大學(xué);2008年
3 劉大同;基于Online SVR的在線時(shí)間序列預(yù)測方法及其應(yīng)用研究[D];哈爾濱工業(yè)大學(xué);2010年
4 熊濤;基于EMD的時(shí)間序列預(yù)測混合建模技術(shù)及其應(yīng)用研究[D];華中科技大學(xué);2014年
5 王軍;基于局部模型的時(shí)間序列預(yù)測方法研究[D];哈爾濱工業(yè)大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 陳詩語;基于網(wǎng)絡(luò)的時(shí)間序列預(yù)測[D];西南大學(xué);2015年
2 黃杰;SOM在時(shí)間序列預(yù)測中的應(yīng)用研究[D];蘭州交通大學(xué);2015年
3 胡海峰;泄漏積分型回聲狀態(tài)網(wǎng)的優(yōu)化及其在時(shí)間序列預(yù)測中的應(yīng)用[D];渤海大學(xué);2016年
4 侯效永;多尺度時(shí)間序列預(yù)測[D];蘇州大學(xué);2013年
5 王麗賢;時(shí)間序列預(yù)測技術(shù)研究[D];天津理工大學(xué);2012年
6 王權(quán);基于選擇策略的時(shí)間序列預(yù)測研究[D];南京航空航天大學(xué);2011年
7 宋玉強(qiáng);人工神經(jīng)網(wǎng)絡(luò)在時(shí)間序列預(yù)測中的應(yīng)用研究[D];西安建筑科技大學(xué);2005年
8 張慧;自適應(yīng)模糊時(shí)間序列預(yù)測模型的研究[D];大連海事大學(xué);2012年
9 王欣冉;基于小波包與最小二乘支持向量機(jī)的時(shí)間序列預(yù)測研究[D];中國地質(zhì)大學(xué)(北京);2011年
10 戴群;改進(jìn)型前向神經(jīng)網(wǎng)絡(luò)的時(shí)間序列預(yù)測及其性能比較[D];南京航空航天大學(xué);2003年
,本文編號:2296418
本文鏈接:http://www.lk138.cn/kejilunwen/yysx/2296418.html