幾類非線性動力系統(tǒng)的Hopf分岔研究
[Abstract]:Hopf bifurcation is a kind of important dynamic bifurcation, and Hopf bifurcation control is a challenging topic. This paper studies the Hopf bifurcation and related analysis and control problems of several nonlinear dynamical systems, and then enriches and improves the theoretical results of the bifurcation, discusses the dynamic behavior of the system's balance point, and gives the Hopf score of the system. The characteristic of the bifurcation is analyzed. The bifurcation controller is produced and the bifurcation controller is designed. The control method is proposed to make the system produce the desired dynamic behavior. The control of the amplitude of the Hopf bifurcation limit loop is studied. The amplitude control relation is given. The amplitude is predicted more accurately, and the system's Hopf bifurcation delay control and stability control are realized. Several control strategies are designed. Each control method has its own characteristics and can reach the desired control goal. Several typical nonlinear dynamic systems are selected as examples. Firstly, the research status of nonlinear control theory, bifurcation control, Hopf bifurcation control and chaos control are summarized. The nonlinear dynamics are introduced. Some basic concepts and classifications of Hopf bifurcation of force system are given, the Hopf bifurcation theorem and several bifurcation control methods are given, and several commonly used stability theories and dynamic system theories are introduced to prepare the study of this paper. The limit cycle amplitude table of the generalized Van der Pol type strong nonlinear vibration system is obtained by an improved multiscale method. A number of linear and nonlinear feedback controllers are constructed and the approximate analytic relationship between the feedback coefficient and the amplitude of the limit cycle is obtained. By selecting appropriate feedback coefficients, the amplitude of the limit cycle can be controlled and the control effect of the different controllers is discussed and compared. The results of the numerical simulation verify the correctness and control of the amplitude prediction. The effectiveness of the system and the larger parameters still have high accuracy. The bifurcation and control of a class of chaotic Van der Pol-Duffing systems with multiple unknown parameters are discussed. The stability of the equilibrium point is analyzed by using the Routh-Hurwitz criterion and the critical value of the parameter of the Hopf bifurcation is obtained. The central manifold theorem and the standard type theory are used. The stability index of the bifurcation solution. Without changing the stability of the bifurcation solution, the Washout filter linear controller is designed to change the bifurcation value. Without changing the bifurcation value, the Washout filter nonlinear controller is designed to control the limit cycle amplitude of the system. The limit cycle amplitude obtained by the central manifold and the canonical theory is used. The approximate analytical relationship between the control gain and the control gain has high accuracy and reliable prediction. The results of the numerical simulation verify the correctness of the theoretical analysis, the effectiveness of the control and the reliability of the amplitude prediction. The chaotic attractor in a new chaotic system has been shown by the maximum Li Yap Andrianof exponent of the numerical simulation. The characteristic equation gives the condition of the Hopf bifurcation of the system. By the detailed calculation, the first Lyapunov coefficient of the system is obtained, and the stability of the bifurcation solution is analyzed. The results show that the two equilibrium points of the new chaotic system can have a non degenerate supercritical Hopf bifurcation, so that the bifurcation can be bifurcated at the equilibrium point. The results of the numerical simulation are in agreement with the theoretical derivation. The nonlinear dynamic properties of the equilibrium point of the L u system are discussed. The stability of the equilibrium point is analyzed by the Routh-Hurwitz criterion and the critical value of the parameter of the Hopf bifurcation is obtained. The nonlinear controller realizes the delay control and stability control of the Hopf bifurcation theoretically. The results of the numerical simulation further verify the correctness and feasibility of the theoretical analysis. The Hopf bifurcation control of an improved hyperchaotic L u system is studied. A hybrid control strategy of state feedback joint parameter control is proposed, and the control strategy is proposed. It not only keeps the balance point structure of the original system, but also does not increase the dimension of the original system. By selecting the appropriate control parameters, the delay control of the Hopf bifurcation is realized. Through the standard theory, the stability index of the bifurcation solution is further obtained. Finally, two sets of parameters are given for numerical simulation, and the control strategy is verified. The bifurcation control of the high dimensional nonlinear system is more complex than the low dimensional system, and the method proposed in this paper is simple and effective. Therefore, this method is very meaningful for the bifurcation control of a high dimensional nonlinear system.
【學(xué)位授予單位】:湖南大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:O19
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉俊,汪帆;一類非線性動力系統(tǒng)的定性分析(英文)[J];黑龍江大學(xué)自然科學(xué)學(xué)報;2003年03期
2 鄭惠萍;非線性動力系統(tǒng)分岔混沌實驗演示裝置的開發(fā)[J];河北工業(yè)科技;2005年05期
3 凌代儉;唐炳全;;一類非線性動力系統(tǒng)的分叉分析與仿真[J];計算機仿真;2006年06期
4 李靜;楊朝欣;何斌;;4維一般非線性動力系統(tǒng)規(guī)范形的計算[J];北京工業(yè)大學(xué)學(xué)報;2009年08期
5 張偉;非線性動力系統(tǒng)的規(guī)范形和余維3退化分叉[J];力學(xué)學(xué)報;1993年05期
6 徐思林;關(guān)于非線性動力系統(tǒng)解的漸近性[J];西北建筑工程學(xué)院學(xué)報;1996年03期
7 張偉年;非線性動力系統(tǒng)實驗[J];自然雜志;1997年05期
8 張家忠,許慶余,鄭鐵生;具有局部非線性動力系統(tǒng)周期解及穩(wěn)定性方法[J];力學(xué)學(xué)報;1998年05期
9 張家忠,華軍,許慶余;非線性動力系統(tǒng)中兩鞍-結(jié)分岔點間非穩(wěn)定曲線的確定[J];應(yīng)用數(shù)學(xué)和力學(xué);1999年12期
10 吳志強,陳予恕;含約束非線性動力系統(tǒng)的分岔分類[J];應(yīng)用數(shù)學(xué)和力學(xué);2002年05期
相關(guān)會議論文 前10條
1 李靜;楊朝欣;張偉;何斌;;一般四維非線性動力系統(tǒng)規(guī)范形的計算[A];慶祝中國力學(xué)學(xué)會成立50周年暨中國力學(xué)學(xué)會學(xué)術(shù)大會’2007論文摘要集(下)[C];2007年
2 陳淑萍;張偉;錢有華;;四維非線性動力系統(tǒng)的Bogdanov-Takens規(guī)范形的計算[A];現(xiàn)代數(shù)學(xué)和力學(xué)(MMM-XI):第十一屆全國現(xiàn)代數(shù)學(xué)和力學(xué)學(xué)術(shù)會議論文集[C];2009年
3 李靜;楊召麗;張偉;;三維非線性動力系統(tǒng)唯一規(guī)范形的一般形式[A];第十二屆全國非線性振動暨第九屆全國非線性動力學(xué)和運動穩(wěn)定性學(xué)術(shù)會議論文集[C];2009年
4 金俐;陸啟韶;;非光滑非線性動力系統(tǒng)的穩(wěn)定性分析[A];第七屆全國非線性動力學(xué)學(xué)術(shù)會議和第九屆全國非線性振動學(xué)術(shù)會議論文集[C];2004年
5 李靜;楊朝欣;張偉;何斌;;四維一般非線性動力系統(tǒng)五階規(guī)范形的計算[A];第十一屆全國非線性振動學(xué)術(shù)會議暨第八屆全國非線性動力學(xué)和運動穩(wěn)定性學(xué)術(shù)會議論文摘要集[C];2007年
6 孔慶凱;賀昌政;;關(guān)于一類特殊非線性動力系統(tǒng)穩(wěn)定性的探討[A];Systems Engineering, Systems Science and Complexity Research--Proceeding of 11th Annual Conference of Systems Engineering Society of China[C];2000年
7 李文成;鄧子辰;;高振蕩非線性動力系統(tǒng)的李群積分算法研究[A];中國力學(xué)學(xué)會學(xué)術(shù)大會'2009論文摘要集[C];2009年
8 劉濱濱;李旭;張正娣;;多尺度下非線性動力系統(tǒng)的振蕩及其分岔機制[A];第十四屆全國非線性振動暨第十一屆全國非線性動力學(xué)和運動穩(wěn)定性學(xué)術(shù)會議摘要集與會議議程[C];2013年
9 劉玉濤;何斌;李靜;;參數(shù)變換下的一類高維非線性動力系統(tǒng)的最簡規(guī)范形的研究與計算[A];第十三屆全國非線性振動暨第十屆全國非線性動力學(xué)和運動穩(wěn)定性學(xué)術(shù)會議摘要集[C];2011年
10 宋學(xué)鋒;;混沌經(jīng)濟系統(tǒng)的定量特征及其計算方法[A];復(fù)雜巨系統(tǒng)理論·方法·應(yīng)用——中國系統(tǒng)工程學(xué)會第八屆學(xué)術(shù)年會論文集[C];1994年
相關(guān)博士學(xué)位論文 前10條
1 蔡萍;幾類非線性動力系統(tǒng)的Hopf分岔研究[D];湖南大學(xué);2015年
2 錢長照;非線性動力系統(tǒng)的時滯反饋分岔控制研究[D];湖南大學(xué);2005年
3 符文彬;非線性動力系統(tǒng)的分岔控制研究[D];湖南大學(xué);2004年
4 朱禧;微生物發(fā)酵非線性動力系統(tǒng)全局行為及穩(wěn)定性分析[D];大連理工大學(xué);2014年
5 丁玉梅;非線性動力系統(tǒng)規(guī)范形理論及應(yīng)用問題研究[D];天津大學(xué);2009年
6 王磊;微生物發(fā)酵中的多階段非線性動力系統(tǒng)及隨機噪聲的影響[D];大連理工大學(xué);2009年
7 周艷;非線性動力系統(tǒng)雙Hopf分叉及在工程中的應(yīng)用[D];北京工業(yè)大學(xué);2013年
8 沈邦玉;批式流加與連續(xù)發(fā)酵的非光滑動力系統(tǒng)辨識與優(yōu)化控制[D];大連理工大學(xué);2012年
9 李佼瑞;兩類隨機非線性動力系統(tǒng)和經(jīng)濟應(yīng)用的研究[D];西北工業(yè)大學(xué);2006年
10 徐潤章;非線性動力系統(tǒng)若干理論問題研究[D];哈爾濱工程大學(xué);2008年
相關(guān)碩士學(xué)位論文 前10條
1 蘭天柱;幾類非線性動力系統(tǒng)的動力學(xué)行為研究[D];杭州師范大學(xué);2016年
2 李鵬柱;關(guān)于神經(jīng)網(wǎng)絡(luò)與樣條函數(shù)的逼近性能研究[D];寧夏大學(xué);2016年
3 蘇濤;甘油生物歧化生產(chǎn)1,3-丙二醇的混雜非線性動力系統(tǒng)辨識[D];大連理工大學(xué);2010年
4 謝雯;非線性動力系統(tǒng)的分岔與控制[D];南京航空航天大學(xué);2010年
5 王俊霞;非線性動力系統(tǒng)的混沌同步研究[D];江蘇大學(xué);2005年
6 陳彩霞;非線性動力系統(tǒng)的混沌同步及其在網(wǎng)絡(luò)系統(tǒng)的應(yīng)用[D];江蘇大學(xué);2006年
7 李耀偉;非線性動力系統(tǒng)的穩(wěn)定性分析及其分岔控制[D];蘭州交通大學(xué);2014年
8 孫中奎;同倫理論在非線性動力系統(tǒng)中的應(yīng)用研究[D];西北工業(yè)大學(xué);2005年
9 于晉臣;非線性動力系統(tǒng)的分岔研究[D];北京交通大學(xué);2007年
10 孫慧靜;非線性動力系統(tǒng)分岔、混沌理論及其應(yīng)用[D];北京交通大學(xué);2006年
,本文編號:2148000
本文鏈接:http://www.lk138.cn/kejilunwen/yysx/2148000.html