基于手繪草圖的圖像檢索技術(shù)與算法實(shí)現(xiàn)
[Abstract]:With the expansion of image in digital image library and the popularization of high-tech hardware such as touch-screen mobile phone and tablet computer, the technology of image retrieval in graphic search has gradually entered into people's life. In recent years, more and more scholars at home and abroad pour into the research of hand-drawn sketch retrieval system, and have achieved certain results. Image retrieval technology has experienced a leap-forward development from text retrieval to image-based keyword retrieval and to hand-drawn sketch retrieval. In the sketch retrieval system, people can simply outline the target image on the drawing board provided by the system, and then the system will deal with the sketch edge extraction, contour tracking, feature point assignment, feature conversion, similarity matching and so on. Finally, several target images with high similarity are provided for users. In the process of searching the target image, the main basis of user search is the shape information of the image, which is also in line with the characteristics of human eye observation. Therefore, in the sketch retrieval system, only the contour features of the image are considered, but the color and texture features of the image are not considered. On the basis of studying the advanced sketch retrieval technology at home and abroad, this paper improves the relevant algorithms of sketch retrieval, and designs a new image retrieval system. Firstly, according to the characteristics of user input sketch, the sketch preprocessing module is added. Secondly, this paper compares a large number of edge detection algorithms, and innovatively improves the five-neighborhood tracking method proposed by Wang Fusheng and others, and proposes a three-neighborhood tracking method in the direction of x axis and y axis. The improved three-neighborhood tracking method not only reduces the time consumption of the system, but also improves the accuracy of contour tracking. Then, the shape context algorithm and Fourier transform are combined to make the improved shape context algorithm rotation-invariant, which solves the problem that image offset will reduce the retrieval accuracy. Finally, according to the improved algorithm, a small hand-drawn sketch retrieval system is designed, and a small image library with 300 images is used to carry out experiments, and good results are obtained.
【學(xué)位授予單位】:山東師范大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TP391.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 趙鵬;朱偉偉;吳獻(xiàn)文;劉慧婷;;融合熵和勢(shì)能的手繪草圖特征描述方法[J];華南理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年05期
2 謝黨恩;張志立;徐丹;;一種改進(jìn)的二維彩色鉛筆畫(huà)自動(dòng)繪制算法[J];計(jì)算機(jī)應(yīng)用與軟件;2013年08期
3 王睿;李斌;;基于形狀上下文識(shí)別算法的車(chē)牌識(shí)別研究[J];計(jì)算機(jī)仿真;2011年11期
4 錢(qián)晶;汪增福;;一種基于規(guī)范化形狀的手繪草圖檢索算法[J];中國(guó)科學(xué)技術(shù)大學(xué)學(xué)報(bào);2010年10期
5 張偉;何金國(guó);;Hu不變矩的構(gòu)造與推廣[J];計(jì)算機(jī)應(yīng)用;2010年09期
6 陳竹修;;基于傅里葉變換的形狀上下文描述方法[J];計(jì)算機(jī)應(yīng)用與軟件;2007年06期
7 周豐樂(lè);徐向民;肖躍;周嬌;;一種新的二值圖像目標(biāo)輪廓跟蹤算法[J];微計(jì)算機(jī)信息;2007年06期
8 王福生;齊國(guó)清;;二值圖像中目標(biāo)物體輪廓的邊界跟蹤算法[J];大連海事大學(xué)學(xué)報(bào);2006年01期
9 韋娜,耿國(guó)華,周明全;基于內(nèi)容的圖像檢索系統(tǒng)性能評(píng)價(jià)[J];中國(guó)圖象圖形學(xué)報(bào);2004年11期
10 孫正興 ,徐曉剛 ,孫建勇 ,金翔宇;支持方案設(shè)計(jì)的手繪圖形輸入工具[J];計(jì)算機(jī)輔助設(shè)計(jì)與圖形學(xué)學(xué)報(bào);2003年09期
相關(guān)博士學(xué)位論文 前1條
1 錢(qián)晶;按例和按繪的圖像檢索研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2009年
相關(guān)碩士學(xué)位論文 前6條
1 吳獻(xiàn)文;基于手繪草圖的圖像檢索研究與系統(tǒng)實(shí)現(xiàn)[D];安徽大學(xué);2015年
2 鐘龍招;基于草圖的圖像檢索技術(shù)研究及系統(tǒng)實(shí)現(xiàn)[D];廈門(mén)大學(xué);2014年
3 朱偉偉;基于手繪草圖的圖像檢索方法研究[D];安徽大學(xué);2014年
4 譚清華;基于手繪草圖的圖像檢索研究[D];大連理工大學(xué);2013年
5 夏榮進(jìn);基于形狀上下文的圖像內(nèi)容檢索方法研究[D];華中科技大學(xué);2011年
6 張磊;基于內(nèi)容的圖像檢索研究及其系統(tǒng)實(shí)現(xiàn)[D];廈門(mén)大學(xué);2007年
,本文編號(hào):2326138
本文鏈接:http://www.lk138.cn/kejilunwen/ruanjiangongchenglunwen/2326138.html