防欺騙人臉識別考勤系統(tǒng)研究與設(shè)計
[Abstract]:Compared with other biometrics, face recognition has incomparable advantages and has a wider range of applications. It is a hot research topic in machine vision. In this paper, the research and design of attendance system based on face recognition technology will be carried out, and an improved method is put forward in view of the fact that the existing face recognition system is not deceptive and vulnerable to photo and video spoofing attacks. Firstly, AdaBoost face detection algorithm is used to realize real-time face detection and localization in input video, and hough transform is used to realize the accurate location of human eye pupil by rough location of human eyes. According to the coordinate of human eye pupil, the geometric transformation, scale normalization and histogram equalization are preprocessed to realize the standard face image acquisition. Secondly, the imaging model of real face and deceptive face image and the common methods of anti-deception detection are analyzed, and the anti-deception detection scheme of attendance system based on single frame face image without adding auxiliary equipment is determined. In view of the low recognition rate of single LBP,Fourier algorithm, the fusion of LBP features and Fourier features is taken as feature extraction algorithm, and the algorithm is tested with NUAA database. The test results show that the feature fusion algorithm has good results. Then, for the principal component analysis (PCA),) two-dimensional principal component analysis (2DPCA), the face recognition algorithm is too much computation, does not include sample labels into the training, 2DPCA-LDA feature extraction algorithm, as a face feature extraction algorithm; Finally, ORL face database is used to test the algorithm. The results show that this method has some advantages over the former two algorithms in recognition rate and recognition time. Finally, the attendance system is designed and developed on the platform of PC. The design requirement of attendance system is analyzed, and the function module is developed with algorithm. Finally, the system is tested, and the result shows that it basically meets the design requirements.
【學位授予單位】:西南石油大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP391.41
【參考文獻】
相關(guān)期刊論文 前10條
1 王友釗;潘芬蘭;黃靜;;基于2D-PCA的兩級LDA人臉識別方法[J];計算機工程;2014年09期
2 徐品;童癸;瞿靜;;基于AdaBoost算法和人眼定位的動態(tài)人臉檢測[J];電視技術(shù);2011年09期
3 聶絮飛;;基于VC++的圖像數(shù)據(jù)采集與界面化顯示研究[J];黑龍江科技信息;2010年16期
4 張靈潔;雒喜平;程耀東;;基于VC++的考勤信息管理系統(tǒng)開發(fā)[J];測繪科學;2010年S1期
5 孫霖;潘綱;;人臉識別中視頻回放假冒攻擊的實時檢測方法[J];電路與系統(tǒng)學報;2010年02期
6 田啟川;張潤生;;生物特征識別綜述[J];計算機應(yīng)用研究;2009年12期
7 田源;于鳳芹;;人臉檢測方法綜述[J];計算機安全;2009年05期
8 嚴嚴;章毓晉;;基于視頻的人臉識別研究進展[J];計算機學報;2009年05期
9 寧天夫;;數(shù)字圖像處理技術(shù)的應(yīng)用與發(fā)展[J];艦船電子工程;2009年01期
10 武妍;項恩寧;;動態(tài)權(quán)值預劃分實值A(chǔ)daboost人臉檢測算法[J];計算機工程;2007年03期
相關(guān)碩士學位論文 前5條
1 楊健偉;面向人臉識別的人臉活體檢測方法研究[D];北京郵電大學;2014年
2 彭宇翔;基于小波變換和線性子空間的人臉識別技術(shù)研究[D];浙江大學;2012年
3 齊禮成;基于人臉識別考勤系統(tǒng)的設(shè)計與實現(xiàn)[D];西安電子科技大學;2012年
4 唐曉培;基于子空間的人臉識別算法研究[D];中南大學;2011年
5 孫鑫;特征子空間法人臉識別研究[D];電子科技大學;2005年
,本文編號:2325667
本文鏈接:http://www.lk138.cn/kejilunwen/ruanjiangongchenglunwen/2325667.html