高中生數(shù)形結(jié)合能力的現(xiàn)狀調(diào)查及策略
[Abstract]:Number and shape are important topics in mathematical research, and the combination of number and shape has a long history. Since Pythagoras, everything has been closely linked to form. The analytic geometry created by Descartes is a model of numerical combination model, which greatly promotes the development of numerical combination. Number and form are also the two most basic concepts in mathematics, which are related to each other and demonstrated to each other. In the New Mathematics Curriculum of compulsory Education (2011 Edition), it is clearly pointed out that the combination of numbers and shapes is one of the important methods to explore the new knowledge of mathematics. Therefore, the combination of numbers and shapes has always been the focus of teaching, but also the required content of the college entrance examination over the years. The new round of curriculum reform pays more attention to the cultivation of students' exploration and innovation ability, which puts forward higher requirements for the understanding of students' thought of combining number and shape and the ability to use the combination of number and form to solve problems, and also puts forward new challenges to teachers' teaching. Therefore, it is necessary to study and analyze the application of the thought of combination of numbers and shapes in problem solving and the present situation of students' ability to solve problems, so as to give some strategic suggestions in teaching. On the basis of summing up the previous research results, taking the teaching materials as the basis, taking the educational practice experience as the reference, this paper attempts to deeply study the application of the combination of numbers and shapes in senior high school mathematics, and through questionnaires, oral interviews and classroom practice. To understand the present situation of students' problem-solving ability combined with number and shape. On the basis of full analysis of the results, this paper probes into how teachers should cultivate students' ability of combining numbers and shapes. So that it not only become a fast and effective method for students to solve problems, but also a higher level, so that it rises to a kind of mathematical thought, and internalizes it into students' mathematical literacy. Specifically, this paper is divided into five chapters: the first chapter is the introduction, which mainly expounds the background and significance of the problem research; The second chapter is a literature review, which mainly summarizes the previous research results, including the brief history of the evolution of the combination of numbers and forms, the theoretical basis of the combination of numbers and forms and the educational value of the combination of numbers and forms. In the third chapter, the application of number-form combination in middle school mathematics problem solving is summarized and illustrated with an example: the auxiliary number of the number, the weight of the auxiliary number and the number of the number. In using the combination of number and form to solve the problem, we should follow the principle of equivalence, the principle of two directions and the principle of equivalence. Finally, according to the statistical analysis of the college entrance examination in recent years, this paper summarizes the characteristics of the thought of the combination of logarithm and form in the college entrance examination. In the fourth chapter, we make an empirical investigation on the present situation of the application of logarithmic combination thought, and find that students have a narrow understanding of the thought of numerical combination, and the application ability of students' thought of logarithmic combination is not strong. The main reason is that the students' composition ability is not strong, and the corresponding relationship between the number representation and the shape representation of the same knowledge point is weak. But relatively speaking, students' ability of thinking in shape is stronger than that of thinking in shape. The fifth chapter gives some strategic suggestions according to the problems found in the fourth chapter, including changing the teachers' concept, making good use of the materials in the teaching materials, paying attention to the teaching of mathematical language and making rational use of information technology to strengthen the correspondence between numbers and shapes.
【學(xué)位授予單位】:華中師范大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:G633.6
【相似文獻】
相關(guān)期刊論文 前10條
1 殷建忠;數(shù)形結(jié)合舉例[J];雁北師范學(xué)院學(xué)報;2001年03期
2 符平和;數(shù)思形 形覓數(shù) 數(shù)形結(jié)合百般好[J];遼寧教育學(xué)院學(xué)報;2001年10期
3 蘇建雄;淺談數(shù)形結(jié)合的數(shù)學(xué)思想[J];內(nèi)蒙古科技與經(jīng)濟;2002年S1期
4 劉前恒;利用數(shù)形結(jié)合方法求函數(shù)的最值[J];內(nèi)蒙古科技與經(jīng)濟;2002年S1期
5 王德義;數(shù)形結(jié)合在教學(xué)中的應(yīng)用[J];榆林高等?茖W(xué)校學(xué)報;2002年02期
6 趙成連,范中華;淺論初中數(shù)學(xué)數(shù)形結(jié)合的教學(xué)[J];宿州教育學(xué)院學(xué)報;2002年03期
7 曹文棟;利用“數(shù)形結(jié)合”探求解題捷徑[J];自貢師范高等?茖W(xué)校學(xué)報;2003年02期
8 張屏;數(shù)形結(jié)合解題化抽象為直觀[J];內(nèi)蒙古電大學(xué)刊;2004年05期
9 王穎;淺析“數(shù)形結(jié)合”的數(shù)學(xué)教育意義[J];教學(xué)與管理;2004年36期
10 楊澤典;數(shù)形結(jié)合法在物理教學(xué)中的應(yīng)用[J];黔東南民族師范高等專科學(xué)校學(xué)報;2005年03期
相關(guān)會議論文 前6條
1 楊瓊偉;;以形助數(shù)——數(shù)形結(jié)合在三角函數(shù)中的運用[A];中華教育理論與實踐科研論文成果選編(第三卷)[C];2012年
2 逯建平;;淺談小學(xué)數(shù)學(xué)教學(xué)中的數(shù)形結(jié)合[A];中華教育理論與實踐科研論文成果選編(第六卷)[C];2013年
3 吳小梅;;數(shù)學(xué)教學(xué)中的“數(shù)形結(jié)合”[A];2013年7月現(xiàn)代教育教學(xué)探索學(xué)術(shù)交流會論文集[C];2013年
4 趙玉芳;;數(shù)形結(jié)合解題幾種[A];萃英集——青海省教育委員會、青海省教育學(xué)會優(yōu)秀教育論文集[C];2000年
5 晏瓊花;陳德光;孔維東;;小學(xué)數(shù)學(xué)學(xué)習(xí)的思想方法[A];中華教育理論與實踐科研論文成果選編(第1卷)[C];2009年
6 費曉娟;;三垂線法求二面角[A];2012年河北省教師教育學(xué)會教學(xué)設(shè)計主題論壇論文集[C];2012年
相關(guān)重要報紙文章 前6條
1 江蘇省濱?h北坍初級中學(xué) 戴子軍;透視數(shù)形結(jié)合新考題[N];學(xué)知報;2010年
2 潮安縣彩塘中學(xué) 李燕珠;運用數(shù)形結(jié)合 巧解數(shù)學(xué)問題[N];潮州日報;2008年
3 揚州市江都區(qū)大橋高級中學(xué) 陳亞敏;“數(shù)形結(jié)合”在數(shù)學(xué)教學(xué)中的有效應(yīng)用[N];江蘇教育報;2013年
4 蘭州市第二十六中學(xué) 張得生;如何培養(yǎng)數(shù)學(xué)興趣[N];甘肅日報;2008年
5 陳金芳;在享受中體驗數(shù)學(xué)課堂[N];伊犁日報(漢);2011年
6 五華縣皇華中學(xué) 鐘豪杰;淺談提高初中生學(xué)數(shù)學(xué)的興趣[N];山西青年報;2013年
相關(guān)博士學(xué)位論文 前1條
1 羅新兵;數(shù)形結(jié)合的解題研究:表征的視角[D];華東師范大學(xué);2005年
相關(guān)碩士學(xué)位論文 前10條
1 李巧文;數(shù)形結(jié)合的的心理機制[D];陜西師范大學(xué);2008年
2 徐文龍;“數(shù)形結(jié)合”的認知心理研究[D];廣西師范大學(xué);2005年
3 梁嘉雯;初中學(xué)生數(shù)形結(jié)合認知機制及其發(fā)展的研究[D];廣州大學(xué);2012年
4 李娜;幾何推理與代數(shù)推理的關(guān)系研究[D];華中師范大學(xué);2015年
5 高尚凱;高中生數(shù)形結(jié)合能力的現(xiàn)狀調(diào)查及策略[D];華中師范大學(xué);2015年
6 黎興平;高中生運用數(shù)形結(jié)合思想解決問題情況的調(diào)查與分析[D];東北師范大學(xué);2010年
7 姚瑋;21天數(shù)形結(jié)合能力特訓(xùn)及其對學(xué)生學(xué)習(xí)的影響[D];上海師范大學(xué);2013年
8 劉冰楠;數(shù)形結(jié)合方法在初中數(shù)學(xué)教學(xué)中應(yīng)用研究[D];內(nèi)蒙古師范大學(xué);2012年
9 李花花;高中數(shù)學(xué)教學(xué)中運用數(shù)形結(jié)合提高解題能力的研究[D];天津師范大學(xué);2008年
10 盧向敏;數(shù)形結(jié)合方法在高中數(shù)學(xué)教學(xué)中的應(yīng)用[D];內(nèi)蒙古師范大學(xué);2013年
,本文編號:2494461
本文鏈接:http://www.lk138.cn/jiaoyulunwen/chuzhongjiaoyu/2494461.html