中国韩国日本在线观看免费,A级尤物一区,日韩精品一二三区无码,欧美日韩少妇色

當(dāng)前位置:主頁 > 教育論文 > 初中教育論文 >

高中生數(shù)形結(jié)合能力的現(xiàn)狀調(diào)查及策略

發(fā)布時間:2019-06-06 17:08
【摘要】:數(shù)與形是數(shù)學(xué)研究的重要主題,數(shù)與形的結(jié)合有著悠久的歷史。從畢達哥拉斯“萬物皆數(shù)”開始就將數(shù)和形緊密的聯(lián)系在一起。笛卡爾創(chuàng)立的解析幾何是數(shù)形結(jié)合模式的典范,極大地推動了數(shù)形結(jié)合的發(fā)展。數(shù)和形也是數(shù)學(xué)中的兩個最基本的概念,他們相互聯(lián)系并相互論證。在《義務(wù)教育數(shù)學(xué)新課程(2011年版)》中明確指出:數(shù)形結(jié)合是探索數(shù)學(xué)新知識的重要方法之一。因此,數(shù)形結(jié)合一向是教學(xué)的重點,也是歷年高考的必考內(nèi)容。新一輪課改更加注重學(xué)生探索和創(chuàng)新能力的培養(yǎng),這對學(xué)生數(shù)形結(jié)合思想的理解以及運用數(shù)形結(jié)合解題的能力,提出了更高的要求,也對教師的教學(xué)提出了新的挑戰(zhàn)。因此,有必要對數(shù)形結(jié)合思想在解題中的應(yīng)用以及學(xué)生數(shù)形結(jié)合解題能力現(xiàn)狀進行研究分析,從而給出一些教學(xué)上的策略建議。本文試圖在總結(jié)前研究成果的基礎(chǔ)上,以教材為依據(jù),以教育實踐經(jīng)驗為參考,深入研究數(shù)形結(jié)合在高中數(shù)學(xué)中的應(yīng)用方面,并通過問卷調(diào)查、口頭訪談和課堂實踐的方式,了解學(xué)生數(shù)形結(jié)合解題能力現(xiàn)狀。并在充分分析結(jié)果的基礎(chǔ)上,探討教師應(yīng)如何培養(yǎng)學(xué)生數(shù)形結(jié)合能力。使其不單成為學(xué)生快速有效解題的方法,而且更高層次的,使其上升為一種數(shù)學(xué)思想,并內(nèi)化為學(xué)生的數(shù)學(xué)素養(yǎng)。具體里來說,本文共分5章內(nèi)容:第一章緒論,主要闡述問題研究的背景和意義;第二章文獻綜述,主要總結(jié)前人的研究成果,包括數(shù)形結(jié)合的演變簡史、數(shù)形結(jié)合的理論依據(jù)和數(shù)形結(jié)合的教育價值。第三章數(shù)形結(jié)合在中學(xué)數(shù)學(xué)解題中的應(yīng)用,總結(jié)并用實例說明了數(shù)形結(jié)合應(yīng)用的三種類型:以形輔數(shù)、以數(shù)助形和數(shù)形并重。而在運用數(shù)形結(jié)合解題中應(yīng)遵循等價性原則、雙向性原則和等價性原則,最后根據(jù)對近幾年高考統(tǒng)計分析,總結(jié)高考對數(shù)形結(jié)合思想考察的特點;第四章對數(shù)形結(jié)合思想應(yīng)用的現(xiàn)狀做實證調(diào)查,發(fā)現(xiàn)學(xué)生對數(shù)形結(jié)合思想的理解比較狹隘,學(xué)生對數(shù)形結(jié)合思想的應(yīng)用能力不強。主要原因是學(xué)生構(gòu)圖能力不強、學(xué)生對同一知識點的數(shù)表征和形表征的對應(yīng)關(guān)系較弱。但相對來說學(xué)生“以形思數(shù)”的能力要強于“以數(shù)思形”的能力。第五章根據(jù)第四章調(diào)查研究所發(fā)現(xiàn)的問題給出一些策略性建議,包括轉(zhuǎn)變教師觀念、用好教材中的素材、注重數(shù)學(xué)語言的教學(xué)和合理利用信息技術(shù)加強數(shù)與形的對應(yīng)。
[Abstract]:Number and shape are important topics in mathematical research, and the combination of number and shape has a long history. Since Pythagoras, everything has been closely linked to form. The analytic geometry created by Descartes is a model of numerical combination model, which greatly promotes the development of numerical combination. Number and form are also the two most basic concepts in mathematics, which are related to each other and demonstrated to each other. In the New Mathematics Curriculum of compulsory Education (2011 Edition), it is clearly pointed out that the combination of numbers and shapes is one of the important methods to explore the new knowledge of mathematics. Therefore, the combination of numbers and shapes has always been the focus of teaching, but also the required content of the college entrance examination over the years. The new round of curriculum reform pays more attention to the cultivation of students' exploration and innovation ability, which puts forward higher requirements for the understanding of students' thought of combining number and shape and the ability to use the combination of number and form to solve problems, and also puts forward new challenges to teachers' teaching. Therefore, it is necessary to study and analyze the application of the thought of combination of numbers and shapes in problem solving and the present situation of students' ability to solve problems, so as to give some strategic suggestions in teaching. On the basis of summing up the previous research results, taking the teaching materials as the basis, taking the educational practice experience as the reference, this paper attempts to deeply study the application of the combination of numbers and shapes in senior high school mathematics, and through questionnaires, oral interviews and classroom practice. To understand the present situation of students' problem-solving ability combined with number and shape. On the basis of full analysis of the results, this paper probes into how teachers should cultivate students' ability of combining numbers and shapes. So that it not only become a fast and effective method for students to solve problems, but also a higher level, so that it rises to a kind of mathematical thought, and internalizes it into students' mathematical literacy. Specifically, this paper is divided into five chapters: the first chapter is the introduction, which mainly expounds the background and significance of the problem research; The second chapter is a literature review, which mainly summarizes the previous research results, including the brief history of the evolution of the combination of numbers and forms, the theoretical basis of the combination of numbers and forms and the educational value of the combination of numbers and forms. In the third chapter, the application of number-form combination in middle school mathematics problem solving is summarized and illustrated with an example: the auxiliary number of the number, the weight of the auxiliary number and the number of the number. In using the combination of number and form to solve the problem, we should follow the principle of equivalence, the principle of two directions and the principle of equivalence. Finally, according to the statistical analysis of the college entrance examination in recent years, this paper summarizes the characteristics of the thought of the combination of logarithm and form in the college entrance examination. In the fourth chapter, we make an empirical investigation on the present situation of the application of logarithmic combination thought, and find that students have a narrow understanding of the thought of numerical combination, and the application ability of students' thought of logarithmic combination is not strong. The main reason is that the students' composition ability is not strong, and the corresponding relationship between the number representation and the shape representation of the same knowledge point is weak. But relatively speaking, students' ability of thinking in shape is stronger than that of thinking in shape. The fifth chapter gives some strategic suggestions according to the problems found in the fourth chapter, including changing the teachers' concept, making good use of the materials in the teaching materials, paying attention to the teaching of mathematical language and making rational use of information technology to strengthen the correspondence between numbers and shapes.
【學(xué)位授予單位】:華中師范大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:G633.6

【相似文獻】

相關(guān)期刊論文 前10條

1 殷建忠;數(shù)形結(jié)合舉例[J];雁北師范學(xué)院學(xué)報;2001年03期

2 符平和;數(shù)思形 形覓數(shù) 數(shù)形結(jié)合百般好[J];遼寧教育學(xué)院學(xué)報;2001年10期

3 蘇建雄;淺談數(shù)形結(jié)合的數(shù)學(xué)思想[J];內(nèi)蒙古科技與經(jīng)濟;2002年S1期

4 劉前恒;利用數(shù)形結(jié)合方法求函數(shù)的最值[J];內(nèi)蒙古科技與經(jīng)濟;2002年S1期

5 王德義;數(shù)形結(jié)合在教學(xué)中的應(yīng)用[J];榆林高等?茖W(xué)校學(xué)報;2002年02期

6 趙成連,范中華;淺論初中數(shù)學(xué)數(shù)形結(jié)合的教學(xué)[J];宿州教育學(xué)院學(xué)報;2002年03期

7 曹文棟;利用“數(shù)形結(jié)合”探求解題捷徑[J];自貢師范高等?茖W(xué)校學(xué)報;2003年02期

8 張屏;數(shù)形結(jié)合解題化抽象為直觀[J];內(nèi)蒙古電大學(xué)刊;2004年05期

9 王穎;淺析“數(shù)形結(jié)合”的數(shù)學(xué)教育意義[J];教學(xué)與管理;2004年36期

10 楊澤典;數(shù)形結(jié)合法在物理教學(xué)中的應(yīng)用[J];黔東南民族師范高等專科學(xué)校學(xué)報;2005年03期

相關(guān)會議論文 前6條

1 楊瓊偉;;以形助數(shù)——數(shù)形結(jié)合在三角函數(shù)中的運用[A];中華教育理論與實踐科研論文成果選編(第三卷)[C];2012年

2 逯建平;;淺談小學(xué)數(shù)學(xué)教學(xué)中的數(shù)形結(jié)合[A];中華教育理論與實踐科研論文成果選編(第六卷)[C];2013年

3 吳小梅;;數(shù)學(xué)教學(xué)中的“數(shù)形結(jié)合”[A];2013年7月現(xiàn)代教育教學(xué)探索學(xué)術(shù)交流會論文集[C];2013年

4 趙玉芳;;數(shù)形結(jié)合解題幾種[A];萃英集——青海省教育委員會、青海省教育學(xué)會優(yōu)秀教育論文集[C];2000年

5 晏瓊花;陳德光;孔維東;;小學(xué)數(shù)學(xué)學(xué)習(xí)的思想方法[A];中華教育理論與實踐科研論文成果選編(第1卷)[C];2009年

6 費曉娟;;三垂線法求二面角[A];2012年河北省教師教育學(xué)會教學(xué)設(shè)計主題論壇論文集[C];2012年

相關(guān)重要報紙文章 前6條

1 江蘇省濱?h北坍初級中學(xué) 戴子軍;透視數(shù)形結(jié)合新考題[N];學(xué)知報;2010年

2 潮安縣彩塘中學(xué) 李燕珠;運用數(shù)形結(jié)合 巧解數(shù)學(xué)問題[N];潮州日報;2008年

3 揚州市江都區(qū)大橋高級中學(xué) 陳亞敏;“數(shù)形結(jié)合”在數(shù)學(xué)教學(xué)中的有效應(yīng)用[N];江蘇教育報;2013年

4 蘭州市第二十六中學(xué) 張得生;如何培養(yǎng)數(shù)學(xué)興趣[N];甘肅日報;2008年

5 陳金芳;在享受中體驗數(shù)學(xué)課堂[N];伊犁日報(漢);2011年

6 五華縣皇華中學(xué) 鐘豪杰;淺談提高初中生學(xué)數(shù)學(xué)的興趣[N];山西青年報;2013年

相關(guān)博士學(xué)位論文 前1條

1 羅新兵;數(shù)形結(jié)合的解題研究:表征的視角[D];華東師范大學(xué);2005年

相關(guān)碩士學(xué)位論文 前10條

1 李巧文;數(shù)形結(jié)合的的心理機制[D];陜西師范大學(xué);2008年

2 徐文龍;“數(shù)形結(jié)合”的認知心理研究[D];廣西師范大學(xué);2005年

3 梁嘉雯;初中學(xué)生數(shù)形結(jié)合認知機制及其發(fā)展的研究[D];廣州大學(xué);2012年

4 李娜;幾何推理與代數(shù)推理的關(guān)系研究[D];華中師范大學(xué);2015年

5 高尚凱;高中生數(shù)形結(jié)合能力的現(xiàn)狀調(diào)查及策略[D];華中師范大學(xué);2015年

6 黎興平;高中生運用數(shù)形結(jié)合思想解決問題情況的調(diào)查與分析[D];東北師范大學(xué);2010年

7 姚瑋;21天數(shù)形結(jié)合能力特訓(xùn)及其對學(xué)生學(xué)習(xí)的影響[D];上海師范大學(xué);2013年

8 劉冰楠;數(shù)形結(jié)合方法在初中數(shù)學(xué)教學(xué)中應(yīng)用研究[D];內(nèi)蒙古師范大學(xué);2012年

9 李花花;高中數(shù)學(xué)教學(xué)中運用數(shù)形結(jié)合提高解題能力的研究[D];天津師范大學(xué);2008年

10 盧向敏;數(shù)形結(jié)合方法在高中數(shù)學(xué)教學(xué)中的應(yīng)用[D];內(nèi)蒙古師范大學(xué);2013年

,

本文編號:2494461

資料下載
論文發(fā)表

本文鏈接:http://www.lk138.cn/jiaoyulunwen/chuzhongjiaoyu/2494461.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶183f7***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com