核殼結構水性丙烯酸樹脂乳液的可控制備及其流變行為研究
本文選題:核殼結構 + 水性丙烯酸樹脂; 參考:《武漢大學》2015年博士論文
【摘要】:涂料是典型且復雜的膠體體系,一般由成膜樹脂、顏填料、助劑以及溶劑組成。涂料在我們的生產(chǎn)生活中無處不在,它涂裝于底材表面,在賦予材料美麗外觀的同時,也起到關鍵的保護作用。隨著科技進步和環(huán)保法規(guī)的日益嚴格,全球涂料工業(yè)整體在向環(huán)保型涂料轉變,我國的涂料工業(yè)目前也正處在這一關鍵轉型期。我國是一個涂料大國,2014年涂料產(chǎn)量世界第一。但我國卻并非涂料強國,以汽車涂料為例,我國的汽車產(chǎn)量連續(xù)六年世界領先,目前進入我國市場的眾多合資品牌轎車已基本囊括世界各大著名汽車廠商,但為之配套的汽車涂料供應商卻完全為國外企業(yè)所壟斷(如阿克蘇、BASF、立邦等)。即使是正在興起的國產(chǎn)自主品牌轎車,所用涂料也基本是國外品牌。經(jīng)過近三十年的發(fā)展,中國涂料技術取得了長足進步,溶劑型工業(yè)涂料水平已基本與國外公司相當,但在水性工業(yè)涂料領域,仍處于起步階段。國內在水性涂料用高端原材料、關鍵樹脂合成技術、配方應用方法以及施工工藝等諸多方面與國外涂料企業(yè)相比仍有巨大差距,這些都需要我們涂料研究者扎扎實實地進行系統(tǒng)而深入的研究與知識積累。汽車涂料通常代表著工業(yè)涂料技術的最高水平,而金屬閃光漆作為目前全球最流行的汽車面漆,在其中扮演著重要角色。金屬閃光漆體系通常需要低固含量和高觸變性,以幫助金屬粉定向排列并獲得好的隨角異色性能(FLOP INDEX)。但溶劑型金屬漆在施工過程會排放大量有機溶劑污染環(huán)境,因此金屬閃光漆的水性化是汽車涂料環(huán)保改造的重要環(huán)節(jié),其中的關鍵技術是水性金屬閃光漆體系的流變控制方法。本課題從常用的丙烯酸樹脂乳液入手,系統(tǒng)研究其合成與結構調控技術,同時深入探究該水性樹脂的流變特性及其影響因素,并將這種樹脂進一步應用于水性金屬漆中來制備汽車面漆,以期為開發(fā)具有自主知識產(chǎn)權的水性金屬漆關鍵樹脂奠定基礎。整篇論文的結構框架可分為五個部分,以五個章節(jié)展開:第一章系統(tǒng)綜述了水性丙烯酸樹脂的歷史與發(fā)展、合成方法及應用、水性金屬漆的研究動態(tài)、流變控制問題以及水性涂料的流變控制方法,并提出自己的選題背景與研究思路。第二章主要涉及水性金屬漆用核殼結構丙烯酸樹脂的合成。以常見丙烯酸酯類單體為原料,過硫酸銨為引發(fā)劑,十二烷基硫酸鈉(SLS)和烷基酚聚氧乙烯醚(OP-10)為復配乳化劑,采用核殼乳液聚合技術制備水性金屬漆用丙烯酸樹脂乳液。系統(tǒng)考察了反應溫度、引發(fā)劑濃度、乳化劑配比及濃度對于反應轉化率、粒徑和分子量等的影響。結果顯示小幅度的溫度變化對反應轉化率影響不大,隨引發(fā)劑濃度從0.30%增加到0.62%,體系的轉化率先增加后降低,而分子量卻-直在下降,最適引發(fā)劑濃度在0.39%。乳化劑的用量和配比對反應轉化率和粒徑分布有很大影響。隨復配的陰:非離子乳化劑中OP-10的增多,反應轉化率下降的同時產(chǎn)物粒徑增大,分布變寬,推測其原因可能是由于OP-10的乳化能力弱于SLS所致。在固定陰:非離子乳化劑(質量比)=1:0.5的情況下,隨總乳化劑用量從1.0%增加到2.5%,反應轉化率先增加后趨于平穩(wěn),并且乳液粒徑分布變窄。優(yōu)化各種影響因素得到最佳的合成路線為:SLS:OP-10=1:0.5,乳化劑濃度1.40%,引發(fā)劑濃度0.39%,反應溫度76℃,體系轉化率可達96.4%。由此所得樹脂乳液采用電鏡、紅外、GPC、熱重等進行了詳細表征,并將其應用于水性金屬漆配方中,獲得良好的鋁粉定向效果以及成膜性能,FI值為23.04。第三章以所開發(fā)的堿溶脹型核殼結構丙烯酸樹脂乳液為模型,系統(tǒng)研究聚合物單體組分對于樹脂增稠性能及粘彈性的影響規(guī)律。結果表明酸單體甲基丙烯酸(MAA)是樹脂增稠的根源和主因,對于樹脂的增稠和流變調控性影響最大。在固定其它組分含量不變的情況下,隨羥基單體甲基丙烯酸羥丙酯(HPMA)用量的增加,樹脂溶脹能力不斷增強,體系粘度和模量都有小幅度增加;隨核層軟硬單體組成中軟單體丙烯酸丁酯(BA)含量的增加,樹脂的溶脹能力也在不斷加強,但體系模量則先增加后減小,推測BA含量高時體系粘度不升反降的原因是聚合物結構強度降低所致。殼層軟硬單體對于體系粘彈性的影響規(guī)律與核層-致。第四章是深入考察了水性金屬漆用堿和助劑共增稠樹脂乳液的制備及其增稠機理。堿(有機胺,如二甲基乙醇胺)溶脹型水性丙烯酸樹脂乳液在中和后,由于羧基解離,聚合物鏈段溶脹增稠從而實現(xiàn)流變控制。但體系所用有機胺中和劑容易隨著儲存時間的延長或環(huán)境溫度的升高而揮發(fā),從而影響體系觸變性甚至產(chǎn)品穩(wěn)定性。為解決這一問題,本章設計合成殼層含有交聯(lián)單體(二乙烯基苯)的核殼結構丙烯酸樹脂乳液,該乳液直接加堿不會增稠,但加入少量成膜助劑乙二醇丁醚后卻可顯著增稠并具有強觸變性。采用粒度儀、表面張力儀、流變儀以及掃描電鏡等手段對該乳液在堿和助劑共同作用下的溶脹行為、界面性質、微觀結構以及流變性質進行了詳細的表征與研究,結果顯示堿可以小幅度溶脹乳膠粒子,助劑不能溶脹粒子但可改變乳液界面性質從而使其發(fā)生絮凝,堿和助劑共增稠的機理是樹脂堿溶脹能力和助劑絮凝效應的加和。這種堿和助劑共增稠分散體的流變性質可以通過固含量、中和度和助劑用量來調控,并且這種增稠分散體非常穩(wěn)定,室溫密封儲存六個月無相分離,仍可以被很好剪切。第五章為驗證堿和助劑共增稠機理的有效性與普遍性,我們將這種共增稠模式引入到常見的非核殼結構丙烯酸乳液體系,僅以甲基丙烯酸、丙烯酸丁酯和甲基丙烯酸甲酯三種單體利用乳液聚合技術制備出簡單的丙烯酸共聚乳液。由于共聚物中大量羧基被包埋在粒子內部,乳液直接加堿中和也不能增稠,而繼續(xù)加入乙二醇丁醚后體系可獲得較強的增稠能力和觸變性。研究顯示樹脂增稠的原因仍然是樹脂堿溶脹能力和助劑絮凝效應的加和。對體系的流變性質進行進一步研究發(fā)現(xiàn),樹脂增稠能力同時受聚合物組成、助劑用量及其種類的影響。此外,將堿和助劑共增稠的模式引入到傳統(tǒng)苯丙乳液體系,發(fā)現(xiàn)同樣適用,推測該模式應具有一定普適性,還可以推廣到乙丙乳液、醋丙乳液等其它水性丙烯酸乳液體系。
[Abstract]:Paint is a typical and complex colloid system, usually composed of film forming resin, pigments, fillers, auxiliaries and solvents. The coating is ubiquitous in our production and life. It is coated on the surface of the base material and plays a key protection role while giving the beautiful appearance of the material. With the progress of Science and technology and the increasingly strict environmental regulations, the global paint is becoming more and more strict. Industry as a whole is changing to environment-friendly coatings. China's paint industry is now in this key transition period. China is a big country in paint, the production of paint in 2014 is the first in the world. But China is not a powerful coating country. As an example of automobile coatings, China's automobile production has been leading the world for six years in a row, and many joint ventures have entered the market of our country. Brand cars have basically included the world's most famous automobile manufacturers, but the matching automotive coatings suppliers are completely monopolized by foreign enterprises (such as Akesu, BASF, Li bang, etc.). Even the emerging domestic independent brand cars are basically foreign brands. After nearly thirty years of development, China's coating technology has been obtained. The level of solvent based industrial coatings has been basically equal to that of foreign companies, but in the field of water-based industrial coatings, it is still in its infancy. There are still huge gaps in the high quality raw materials used in water-based coatings, key resin synthesis technology, formula application and construction technology, compared with foreign coatings enterprises. It is necessary for our coatings researchers to carry out systematic and in-depth research and knowledge accumulation. Automotive coatings usually represent the highest level of industrial coating technology, and metal flash paint plays an important role in the world's most popular automotive finish. The metal flash paint system usually requires low solid content and high thixotropy. In order to help the metal powder to arrange and obtain the good FLOP INDEX, the solvent type metal paint will discharge a large amount of organic solvent pollution in the construction process, so the water character of the metal flash paint is an important link in the environmental protection reform of the automobile coatings, and the key technology is the rheological control of the water based metal flash paint system. Methods. From the common acrylic resin emulsion, the synthetic and structural regulation techniques are systematically studied, and the rheological properties and influencing factors of the water-borne resin are deeply explored, and the resin is further applied to the water based metal paint to prepare the automotive finish, in order to develop a water-based metal paint with independent intellectual property right. The framework of the key resin is laid. The structure of the whole paper can be divided into five parts, which are divided into five chapters. The first chapter is a systematic review of the history and development of water-based acrylic resin, the synthesis method and application, the research trend of the water based metal paint, the rheological control and the rheological control method of the water-based coatings, and put forward its own topic. In the second chapter, the second chapter mainly deals with the synthesis of acrylic resin with core and shell structure for water-based metallic paint. Using common acrylate monomers as raw material, ammonium persulfate as initiator, twelve alkyl sodium sulfate (SLS) and alkyl phenol polyoxyethylene ether (OP-10) as compound emulsifiers, the preparation of water-based metal lacquer by core shell emulsion polymerization technology The effects of reaction temperature, initiator concentration, emulsifier ratio and concentration on reaction conversion, particle size and molecular weight were systematically investigated. The results showed that the small amplitude of temperature change had little effect on the conversion rate. As the concentration of initiator increased from 0.30% to 0.62%, the transformation of the system was first increased and then decreased, and the molecular weight was increased. However, the amount and proportion of the optimum initiator concentration in the 0.39%. emulsifier have a great influence on the conversion and particle size distribution. With the addition of the negative: the increase of OP-10 in the non ionic emulsifier and the decrease of the reaction rate, the particle size of the product increases and the distribution becomes wider. The reason may be that the emulsifying ability of OP-10 is weaker than that of SLS. In the case of fixed Yin: non ionic emulsifier (mass ratio) =1:0.5, the amount of the total emulsifier increased from 1% to 2.5%, the reaction conversion first increased and then tended to be stable, and the particle size distribution of the emulsion narrowed. The optimum synthesis route was SLS: OP-10=1:0.5, the concentration of emulsifier 1.40%, and the concentration of initiator 0.39%. The reaction temperature is 76 C, the conversion rate of the system can reach 96.4%., and the resin emulsion is characterized by electron microscope, infrared, GPC, hot weight and so on. It is applied to the formulation of water based metal paint, and good aluminum powder orientation and film forming properties are obtained. The FI value is 23.04. third chapter of the developed alkali swelling core shell structure acrylic resin. The effect of the monomer composition of the polymer on the thickening property and viscoelasticity of the resin was studied systematically. The results showed that the acid monomer methylacrylic acid (MAA) was the root and main cause of the thickening of the resin, which had the greatest influence on the thickening of the resin and the regulation of the rheology. With the increase of HPMA content, the swelling ability of the resin is increasing and the viscosity and modulus of the system increase slightly. With the increase of BA content in the soft and hard monomer of the nuclear layer, the swelling ability of the resin is also strengthened, but the system modulus increases first and then decreases. It is inferred that the viscosity of the system is high when the content of BA is high. The cause of the rise and reverse is the decrease of the strength of the polymer structure. The effect of the shell and hard monomers on the viscoelasticity of the system and the nuclear layer. The fourth chapter is a thorough investigation of the preparation and thickening mechanism of the common thickening resin emulsion of the alkali and auxiliaries for water-based metallic lacquers and the thickening mechanism of the waterborne acrylic resin emulsion of alkali (organic amine, such as two methyl ethanolamine). After the solution is neutralized, the polymer chain segment swelling and thickening to achieve rheological control because of the dissociation of the carboxyl group. However, the organic amine neutralizer used in the system tends to volatilize with the prolongation of storage time or the increase of the ambient temperature, thus affecting the thixotropy of the system and even the stability of the product. The body (two vinyl benzene) core-shell structure acrylic resin emulsion, the emulsion can not thickening directly with alkali, but it can thicker and have strong thixotropy after adding a small amount of film forming auxiliary glycol butyl ether. The swelling line of the emulsion under the joint action of alkali and auxiliary agent is made with the hand segment of particle size instrument, surface tension meter, rheometer and scanning electron microscope. The interfacial properties, microstructure and rheological properties were characterized and studied in detail. The results showed that the alkali could expand the latex particles in a small margin. The additives could not be swelling particles but could change the interfacial properties of the emulsion to flocculate them. The mechanism of the common thickening of alkali and auxiliaries was the addition of the capacity of the tree fat alkali and the flocculation effect of the auxiliaries. The rheological properties of the common thickened dispersion can be regulated by the solid content, neutralization degree and the amount of auxiliaries, and the thickened dispersion is very stable. The room temperature is sealed for six months without phase separation and can be well cut. The fifth chapter is to verify the effectiveness and universality of the common thickening mechanism of the alkali and auxiliary agents. The thickening model was introduced into the common non nuclear acrylic emulsion system. Simple acrylic copolymerization emulsion was prepared by three monomers of methacrylic acid and methyl methacrylate methyl methacrylate, three monomers, which were embedded in the particles, and the emulsion was directly neutralized by alkali and could not be thickened. The study shows that the thickening of the resin is still the addition of the swelling capacity of the resin base and the flocculation effect of the additives. Further research on the rheological properties of the system shows that the thickening ability of the resin is also composed of the polymer, the amount of additives and the types of the additives. In addition, the model of the common thickening of alkali and auxiliaries was introduced into the traditional styrene acrylic emulsion system. It was found that the model was also applicable, and the model should be universality, and other water-based acrylic emulsion systems such as ethylene propylene emulsion, vinegar acrylic emulsion and other emulsion systems could be extended.
【學位授予單位】:武漢大學
【學位級別】:博士
【學位授予年份】:2015
【分類號】:TQ630.1
【相似文獻】
相關期刊論文 前10條
1 宋肖鍇;周雅靜;李亮;;核殼結構金屬-有機骨架的研究[J];化學進展;2014年Z1期
2 陳軍;吳唯;吳笑融;陳玉潔;何三雄;;聚(苯乙烯-丙烯酰胺)/蒙脫土核殼結構增強尼龍6[J];高分子材料科學與工程;2011年01期
3 曹順生;劉白玲;鄧小波;;核殼結構材料表征技術[J];江西化工;2008年03期
4 俞希躍;劉剛;常振旗;李文杰;周杰;田揚超;;聚合物核殼結構微球的同步輻射顯微表征研究[J];中國科學技術大學學報;2011年06期
5 張立新,羅佳,王琳,金浦,陳乾旺;SiO_2/PE/Bi_2S_3核殼結構納米顆粒的合成與性能(英文)[J];無機化學學報;2005年09期
6 方玉堂;劉洪;;核殼結構納米復合材料的超聲合成研究進展[J];材料導報;2008年S2期
7 吳唯;陳軍;何思陽;楊竹亭;陳川;;聚(苯乙烯-丙烯酰胺)/蒙脫土核殼結構材料改性聚酰胺6的性能研究[J];中國塑料;2009年12期
8 郎雷鳴;;鋅基熒光量子點核殼結構材料的制備及發(fā)光性能研究[J];科技信息;2010年33期
9 樊惠昌;;研究核殼乳液技術 開辟升級換代途徑[J];中國皮革;1990年03期
10 張愷,韓坤,張學海,張俊虎,楊柏;具有無機/有機核殼結構的窄分散發(fā)光微球的合成與表征[J];科學通報;2005年11期
相關會議論文 前10條
1 劉偉;蓋國勝;楊玉芬;樊世民;;核殼結構粒子制備及分析[A];第十一屆全國粉體工程學術會暨相關設備、產(chǎn)品交流會論文集[C];2005年
2 何浪;王靜波;洪昕林;;核殼結構丙烯酸樹脂的制備及粒徑研究[A];中國化學會第十三屆膠體與界面化學會議論文摘要集[C];2011年
3 趙華偉;時虎;;核殼處理技術在阻燃防火中的應用[A];2011安徽省科協(xié)年會——海灣杯“社會消防安全管理創(chuàng)新”專題年會論文集[C];2011年
4 魯遙;趙鵬程;胡應乾;蔣宏亮;王利群;;同軸電紡制備生物降解多功能核殼纖維膜[A];中國化學會第26屆學術年會功能高分子科學前沿分會場論文集[C];2008年
5 劉俠俠;;吸波核殼材料的研究進展與發(fā)展方向[A];中國硅酸鹽學會陶瓷分會2012年學術年會論文集[C];2012年
6 費翔;徐世美;王吉德;;新型核殼結構納米復合雙網(wǎng)絡水凝膠的合成及其機械性能研究[A];2009年全國高分子學術論文報告會論文摘要集(下冊)[C];2009年
7 馬宇春;李雪梅;柳越;李廣錄;何濤;;基于核殼結構的納米粒子型正滲透驅動液的研究[A];第四屆中國膜科學與技術報告會論文集[C];2010年
8 任召輝;;CoFe_2O_4-PbTiO_3核殼結構納米纖維的同軸電子霧化噴涂制備與表征[A];2011中國材料研討會論文摘要集[C];2011年
9 陳潔;彭呈;方大為;聶俊;馬貴平;;水蒸氣誘導相分離法制備核殼結構納米纖維[A];2012年全國高分子材料科學與工程研討會學術論文集(上冊)[C];2012年
10 丁瑜秋;陳小慧;徐佩;楊善中;徐紅梅;丁運生;;共聚法構筑有機硅-聚氨酯-丙烯酸酯核殼結構粒子及其乳液性能研究[A];2013年全國高分子學術論文報告會論文摘要集——主題A:高分子合成[C];2013年
相關重要報紙文章 前1條
1 姜恩;我國成功制備出核殼結構的碳納米管[N];科技日報;2009年
相關博士學位論文 前10條
1 李偉;鈦基和碳基核殼結構納米材料的制備與應用研究[D];復旦大學;2013年
2 張寶忠;ZSM-5分子篩的納米化、核殼化及其催化性能研究[D];北京有色金屬研究總院;2015年
3 高彩天;氧化物半導體核殼異質結構在光電化學器件中的應用[D];蘭州大學;2015年
4 南皓雄;單原子殼層核殼結構催化劑及鉑基合金催化劑的制備與研究[D];華南理工大學;2015年
5 付念;核殼可控結構聚合物的制備及其對PBT增韌改性的研究[D];河北工業(yè)大學;2015年
6 李灑;核殼結構納米材料的制備、調控與功能化特性[D];清華大學;2015年
7 李彥興;二氧化硅包裹的核殼結構納米金屬催化劑的制備及氨分解制氫研究[D];南京大學;2011年
8 賀珊珊;核殼微納結構材料的制備及對水中微污染物的去除研究[D];中國地質大學;2016年
9 何浪;核殼結構水性丙烯酸樹脂乳液的可控制備及其流變行為研究[D];武漢大學;2015年
10 呂強;核殼結構的磁性氧化鐵復合材料的合成、表征及應用[D];大連理工大學;2014年
相關碩士學位論文 前10條
1 李春龍;一維核殼結構LiFePO_4/C復合材料的合成與電化學性能的研究[D];湖南工業(yè)大學;2015年
2 劉曉芳;磁性核殼結構鎳基納米催化劑的制備及加氫性能研究[D];河北大學;2015年
3 鄭書紅;稀土摻雜熒光溫度傳感材料設計與合成[D];浙江大學;2015年
4 劉夢眉;兩種磁性材料的微波吸收性能分析[D];復旦大學;2014年
5 薛芬;界面活性核殼復合材料的制備及乳化性能研究[D];山西大學;2014年
6 王軍;核殼結構納米復合氧化物的制備與表征[D];南京理工大學;2015年
7 錢力;應用于噴墨打印含能油墨的核殼結構鍋熱劑的制備研究[D];南京理工大學;2015年
8 梁珂娟;核殼結構氧化物/還原氧化石墨烯基復合體系的組裝及其性能研究[D];上海應用技術學院;2015年
9 朱曉琳;鈷基催化劑的合成、表征及催化性能研究[D];北京化工大學;2015年
10 馬志強;核殼結構CuO-Bi_2O_3@SiO_2催化劑的制備及炔化性能[D];山西大學;2015年
,本文編號:1832846
本文鏈接:http://www.lk138.cn/falvlunwen/zhishichanquanfa/1832846.html