中国韩国日本在线观看免费,A级尤物一区,日韩精品一二三区无码,欧美日韩少妇色

當(dāng)前位置:主頁 > 碩博論文 > 工程博士論文 >

由乙二醇直接法制備乙二醇單(雙)乙醚關(guān)鍵技術(shù)研究

發(fā)布時間:2018-08-12 20:32
【摘要】:乙二醇單(雙)醚是一種應(yīng)用廣泛的有機中間體和優(yōu)良溶劑,傳統(tǒng)的合成方法是環(huán)氧乙烷法。本論文以乙二醇(EG)和乙醇(EtOH)為主要原料合成乙二醇單(雙)乙醚(EGEE),通過熱力學(xué)計算了反應(yīng)條件的影響,對催化劑進行了設(shè)計和制備,對合成條件進行了優(yōu)化。主要工作如下:1、通過Aspen Plus計算了溫度、壓力和投料比對反應(yīng)體系平衡組成及EG轉(zhuǎn)化率和EGEE收率的影響。結(jié)果表明,隨著溫度升高,熱力學(xué)平衡體系中乙二醇單乙醚(EGMEE)的量有最大值,乙二醇雙乙醚(EGDEE)的量逐漸降低,最佳反應(yīng)溫度為220℃;n(EtOH):n(EG)升高,有利于EGMEE、EGDEE和乙醚生成,并且會抑制二甘醇(DEG)和1,4-二氧六環(huán)(Diox)的生成。壓力升高有利于平衡向生成蒸氣壓低的高沸點物質(zhì)方向移動,對生成EGMEE和EGDEE有利,超過3 MPa后壓力對反應(yīng)轉(zhuǎn)化率和選擇性影響變小。通過化工熱力學(xué)方法計算了理想氣體狀態(tài)下,EG和EtOH反應(yīng)體系在不同溫度下的平衡常數(shù)。結(jié)果表明,所計算的各反應(yīng)焓變(△rH)值均為負值,低溫有利于生成EGDEE。2、考察了不同類型的L酸、B酸、L堿及同時兼具酸堿性的金屬鹽對EG和EtOH合成EGEE的催化效果。結(jié)果表明,催化劑酸性越強,催化活性越高,表面同時具有酸性位點和堿性位點的催化劑對乙二醇醚的選擇性較高。L酸中BF3活性最強,但選擇性較差,無水AlCl3催化性能較好,在n(EtOH):n(EG)=4:1,反應(yīng)時間4 h,反應(yīng)溫度260℃,反應(yīng)壓力7 MPa,催化劑用量為反應(yīng)物總量的4%(wt)時,EGEE總收率最高,EG轉(zhuǎn)化率為38.8%,EGMEE選擇性為59.9%。AlCl3和Na2HPO4復(fù)配時可使催化劑同時具有酸性和堿性位點,能提高乙二醇醚的選擇性,以n(AlCl3):n(Na2HPO4)=1:3為催化劑時,綜合性能最佳,EG轉(zhuǎn)化率和EGEE選擇性分別為25.1%和72.3%。3、研究了分子篩催化劑制備方法對催化性能的影響。結(jié)果表明,以0.5mol·L-1硫酸銨水溶液通過過量浸漬法對硅鋁比為25的HZSM-5進行改性,得到的催化劑較其他改性分子篩催化劑活性高,能將反應(yīng)溫度降低至180℃。通過掃描電鏡(SEM)、電子能譜(EDS)、X射線衍射(XRD)、低溫氮吸附(BET)、化學(xué)吸附儀(NH3-TPD)、熱重(TG-DTG)等對HZSM-5分子篩的形貌、結(jié)構(gòu)和性能進行了表征。結(jié)果表明,改性后HZSM-5分子篩表面引入了S元素,并新增了超強酸位點,比表面積和平均孔徑較改性前小。通過正交實驗和單因素法獲得的最佳工藝條件為:反應(yīng)溫度180℃,反應(yīng)時間4h,反應(yīng)壓力7 MPa,n(EtOH):n(EG)=4:1,催化劑用量為原料總質(zhì)量的2%,此時EG轉(zhuǎn)化率為68.8%,EGEE的選擇性為92.4%,EGEE產(chǎn)率達到63.6%,與反應(yīng)溫度為200℃時的產(chǎn)率相近,且副產(chǎn)物明顯減少。EG和EtOH在該催化劑上生成EGEE的反應(yīng)為一級反應(yīng),表觀活化能Ea=77.42 kJ·mol-1,指前因子k0=1.844×107 s。4、通過XRD、NH3-TPD、FTIR、SEM、EDS、BET、TG-DTG等方法對改性HZSM-5催化劑使用及失活前后的形貌、結(jié)構(gòu)、表面元素、表面酸性和孔結(jié)構(gòu)的變化進行表征,結(jié)果表明,催化劑在使用過程中失活的主要原因是由于積碳導(dǎo)致催化劑孔道堵塞、表面強酸位點減少造成的,在溫度超過450℃,有氧條件下煅燒可有效除去積碳,使催化劑活性再生。5、考察了磷鎢酸、磷鉬酸、硅鎢酸及其鹽對EG合成EGEE的催化活性,結(jié)果表明,Cs_(0.66)Ag_(0.33)H_2PW_(12)O_(40)經(jīng)300℃煅燒4 h得到的催化劑催化性能最好。采用XRD、Zeta電位及粒度儀、EDS等儀器對該催化劑進行了表征,結(jié)果表明,磷鎢酸銀和磷鎢酸銀銫具有典型的Keggin結(jié)構(gòu),通過中和沉淀法制備的Cs_(0.66)Ag_(0.33)H_2PW_(12)O_(40)平均粒徑為68 nm,再分散性好,560℃時雜多陰離子Keggin結(jié)構(gòu)才會被破壞,熱穩(wěn)定性好。該催化劑在n(EtOH):n(EG)=4:1,反應(yīng)溫度200℃,反應(yīng)壓力7 MPa,反應(yīng)時間4 h,催化劑用量0.8%的反應(yīng)條件下,能使EG的轉(zhuǎn)化率(GC)達到96.2%,EGMEE和EGDEE的選擇性(GC)分別達到49.3%和48.6%,EGEE的總產(chǎn)率(GC)為94.1%,接近熱力學(xué)計算平衡值。以氣相SiO_2為粘結(jié)劑對Cs_(0.66)Ag_(0.33)H_2PW_(12)O_(40)納米顆粒通過壓片,破碎,過篩等工藝進行成型,得到60~80目的催化劑顆粒耐水和EtOH穩(wěn)定性好。最佳成型工藝為壓片壓力25 MPa,壓片時間30 min,在此條件下成型的催化劑在固定床中連續(xù)反應(yīng)100 h,催化活性未明顯下降。
[Abstract]:Ethylene glycol monoether (EGEE) is a widely used organic intermediate and excellent solvent. The traditional synthesis method is ethylene oxide method. In this paper, EGEE was synthesized from ethylene glycol (EG) and ethanol (EtOH). The main work is as follows: 1. The effects of temperature, pressure and feed ratio on the equilibrium composition, EG conversion and EGEE yield of the reaction system are calculated by Aspen Plus. The results show that the amount of EGMEE in the thermodynamic equilibrium system reaches its maximum and the amount of EGDEE decreases gradually with the increase of temperature. The optimum reaction temperature is 220; n (EtOH): n (EG) increases, which is beneficial to the formation of EGMEE, EGDEE and ether, and inhibits the formation of diethylene glycol (DEG) and 1,4-dioxane (Diox). The equilibrium constants of EG and EtOH reaction systems at different temperatures in ideal gas were calculated by chemical thermodynamic method. The results showed that the calculated enthalpy changes (delta rH) were all negative and the low temperature was favorable to the formation of EGDEE.2. Different types of acid, B acid, L base and gold with both acid and base were investigated. The results showed that the stronger the acidity of the catalyst, the higher the catalytic activity, and the higher the selectivity of the catalyst with both acidic and basic sites on the surface to ethylene glycol ether. The total yield of EGEE was the highest when the reaction temperature was 260 C, the pressure was 7 MPa, and the amount of catalyst was 4%(wt) of the total amount of reactants. The conversion of EG was 38.8%, and the selectivity of EGMEE was 59.9%. When AlCl3 and Na2HPO4 were mixed, the catalyst had both acidic and basic sites, which could improve the selectivity of ethylene glycol ether. The catalytic activity of HZSM-5 with Si/Al ratio of 25.5 mol The morphology, structure and properties of HZSM-5 zeolite were characterized by scanning electron microscopy (SEM), electron energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), nitrogen adsorption at low temperature (BET), chemical adsorption apparatus (NH3-TPD), thermogravimetry (TG-DTG). The results showed that S element was introduced into the surface of HZSM-5 zeolite and Superacid was added. The optimum technological conditions obtained by orthogonal experiment and single factor method are as follows: reaction temperature 180 C, reaction time 4 h, reaction pressure 7 MPa, n (EtOH): n (EG) = 4:1, catalyst dosage 2% of the total mass of raw material, the conversion of EG is 68.8%, the selectivity of EGEE is 92.4%, and the yield of EGEE is 63.6%, respectively. The yield of EG and EtOH on the catalyst was similar and the by-products were obviously reduced at 200 C. The apparent activation energy Ea = 77.42 kJ mol-1 and the pre-exponential factor K0 = 1.844 107 S.4 were obtained by XRD, NH3-TPD, FTIR, SEM, EDS, BET, TG-DTG and other methods. Characterization of structure, surface elements, surface acidity and pore structure showed that the deactivation of the catalyst was mainly due to the pore blockage caused by carbon deposition and the decrease of strong acid sites on the catalyst surface. Calcination under aerobic conditions could effectively remove carbon deposition and regenerate the catalyst. 5 The catalytic activity of phosphotungstic acid, phosphomolybdic acid, silicotungstic acid and their salts for EGEE synthesis was studied. The results showed that the catalysts prepared by calcination of Cs_ (0.66) Ag_ (0.33) H_2PW_ (12) O_ (40) at 300 C for 4 h had the best catalytic performance. The catalysts were characterized by XRD, Zeta potential, particle size analyzer and EDS. The typical Keggin structure was prepared by neutralization precipitation method. The average particle size of CS_ (0.66) Ag_ (0.33) H_2PW_ (12) O_ (40) was 68 nm. The Keggin structure of heteropolyanion was destroyed and its thermal stability was good at 560 C. The catalyst had good thermal stability when n (EtOH): n (EG) = 4:1, reaction temperature 200 reaction pressure 7 MPa, reaction time 4 h, catalyst dosage 0.8%. Under the reaction conditions, the conversion of EG (GC) can reach 96.2%, the selectivity of EGMEE and EGDEE (GC) can reach 49.3% and 48.6%, respectively. The total yield of EGEE (GC) is 94.1%, which is close to the thermodynamic equilibrium value. The optimum forming process was 25 MPa pressure and 30 min time. Under this condition, the catalyst was continuously reacted in a fixed bed for 100 h, and the catalytic activity did not decrease significantly.
【學(xué)位授予單位】:鄭州大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:TQ223.2

【相似文獻】

相關(guān)期刊論文 前10條

1 劉玲娜;張強;;乙二醇醚生產(chǎn)技術(shù)及市場應(yīng)用[J];化工中間體;2012年05期

2 ;生產(chǎn)乙基乙二醇醚的新方法[J];江蘇化工;1980年03期

3 祝軼;聚四亞甲基乙二醇醚[J];精細化工;1986年03期

4 王永杰,李文釗,劉金龍;乙二醇醚生產(chǎn)技術(shù)的進展[J];石油化工;1999年03期

5 崔小明;我國乙二醇生產(chǎn)技術(shù)進展及市場分析[J];江蘇化工;2005年01期

6 汪家銘;;乙二醇發(fā)展概況及市場前景[J];合成技術(shù)及應(yīng)用;2009年04期

7 夏紀(jì)鼎,胡征宇;十二醇聚乙二醇醚分子量分布與其溶液界面性能的關(guān)系[J];應(yīng)用化學(xué);1985年04期

8 ;科技薈萃[J];今日科技;1987年07期

9 ;道化學(xué)公司擴大乙二醇醚生產(chǎn)[J];吉化科技;1994年01期

10 宋冠秦;我國乙二醇的生產(chǎn)與需求[J];現(xiàn)代化工;1995年12期

相關(guān)會議論文 前2條

1 張木;王永杰;李晨曦;;合成乙二醇醚催化劑的研究進展[A];第十一屆全國青年催化學(xué)術(shù)會議論文集(上)[C];2007年

2 王永杰;;連續(xù)式催化制備乙二醇乙醚[A];第十一屆全國青年催化學(xué)術(shù)會議論文集(下)[C];2007年

相關(guān)重要報紙文章 前1條

1 金霖;乙二醇醚:需求強勁 發(fā)展當(dāng)慎[N];中國化工報;2003年

相關(guān)博士學(xué)位論文 前2條

1 張凱;催化纖維素制備乙二醇及新型膜分離研究[D];華南理工大學(xué);2016年

2 李剛森;由乙二醇直接法制備乙二醇單(雙)乙醚關(guān)鍵技術(shù)研究[D];鄭州大學(xué);2017年

相關(guān)碩士學(xué)位論文 前7條

1 潘兵;膜反應(yīng)器中乙二醇乙醚的合成研究[D];天津工業(yè)大學(xué);2008年

2 許國莉;乙二醇醚的合成及其水溶液相圖的研究[D];黑龍江大學(xué);2015年

3 趙立興;銅催化空氣氧化選擇性斷裂乙二醇醚中飽和C-C鍵的研究[D];贛南師范學(xué)院;2012年

4 雷海琴;甲基丙烯酸(聚)乙二醇醚單酯合成工藝研究[D];南京林業(yè)大學(xué);2009年

5 朱舟;清潔行為及其引發(fā)的化學(xué)反應(yīng)對室內(nèi)空氣質(zhì)量的影響研究[D];湖南大學(xué);2007年

6 孫奇;環(huán)氧乙烷催化水合制乙二醇的工藝研究[D];江蘇工業(yè)學(xué)院;2009年

7 戴忻;環(huán)氧乙烷的吸收和催化水合法合成乙二醇[D];南京工業(yè)大學(xué);2004年

,

本文編號:2180285

資料下載
論文發(fā)表

本文鏈接:http://www.lk138.cn/shoufeilunwen/gckjbs/2180285.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶0241a***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com