分?jǐn)?shù)次Benjamin-Bona-Mahony方程的適定性研究
發(fā)布時(shí)間:2018-10-17 18:37
【摘要】:本文研究了如下的分?jǐn)?shù)次Benjαmin-Bonα-Mαhony(BBM)方程的柯西問題的解的漸進(jìn)行為(?)tu +(?)xu + u(?)xu + Dα(?)tu =0,其中α0,Dα定義如下(?)(ξ)=|ξ|α(?)(ξ),對(duì)于所有α0.當(dāng)α≥1時(shí),我們證明了柯西問題的解在Hα/2(R)上的全局適定性,當(dāng)0α1時(shí),我們證明了柯西問題的解在Hr(R),其中rmαx{1,3/2-α}時(shí)的局部適定性,并給出了非線性部分所導(dǎo)致的解的下降形式。最后,我們用數(shù)值的方法計(jì)算并展示了當(dāng)α≥1時(shí),解的弱色散性,以及0α1/3時(shí)解的爆破。
[Abstract]:In this paper, we study the asymptotic behavior of the solution of the Cauchy problem of fractional Benj 偽 min-Bon 偽 -M 偽 hony (BBM) equation (?) tu (?) xu u (?) xu D 偽 (?) tu = 0, where 偽 0 D 偽 is defined as follows (?) (尉) = 尉 偽 (?) (尉), for all 偽 0. When 偽 鈮,
本文編號(hào):2277593
[Abstract]:In this paper, we study the asymptotic behavior of the solution of the Cauchy problem of fractional Benj 偽 min-Bon 偽 -M 偽 hony (BBM) equation (?) tu (?) xu u (?) xu D 偽 (?) tu = 0, where 偽 0 D 偽 is defined as follows (?) (尉) = 尉 偽 (?) (尉), for all 偽 0. When 偽 鈮,
本文編號(hào):2277593
本文鏈接:http://www.lk138.cn/kejilunwen/yysx/2277593.html
最近更新
教材專著