中国韩国日本在线观看免费,A级尤物一区,日韩精品一二三区无码,欧美日韩少妇色

基于柱坐標(biāo)系下電場(chǎng)耦合勢(shì)三維有限體積法研究方位隨鉆電磁測(cè)井響應(yīng)

發(fā)布時(shí)間:2018-07-31 05:25
【摘要】:在現(xiàn)代油氣勘探開(kāi)發(fā)中,隨鉆測(cè)井(LWD)技術(shù)可應(yīng)用于鉆鋌的實(shí)時(shí)監(jiān)控和實(shí)現(xiàn)地質(zhì)導(dǎo)向,以便有效提高大斜度井和水平井鉆進(jìn)成功率、油氣采收率和單井產(chǎn)能。其原理是將測(cè)量裝置安裝在鉆鋌附近,使其能夠在鉆井過(guò)程中對(duì)鉆鋌周?chē)貙舆M(jìn)行有效測(cè)量并將測(cè)量結(jié)果實(shí)時(shí)傳送到地面或儲(chǔ)存起來(lái)。由于剛鉆開(kāi)的地層受泥漿侵入影響較小,隨鉆測(cè)井更容易獲得地層真實(shí)參數(shù)。在經(jīng)歷了三十多年的發(fā)展以后,隨鉆測(cè)井已包含了電阻率、聲波、中子與密度、核磁以及井壁成像等幾乎所有的測(cè)井方法,不僅能夠進(jìn)行地質(zhì)導(dǎo)向,而且還能夠即時(shí)進(jìn)行復(fù)雜油氣儲(chǔ)層綜合評(píng)價(jià)。方位隨鉆電磁測(cè)井是一種新型隨鉆測(cè)井技術(shù),能夠更好地解決各向異性地層中復(fù)雜油氣探勘開(kāi)發(fā)問(wèn)題,該儀器由安裝在鉆鋌表面的傾斜線(xiàn)圈系組合成發(fā)射與接收系統(tǒng),利用鉆鋌在鉆進(jìn)過(guò)程中的旋轉(zhuǎn),測(cè)量不同方位角上的電磁場(chǎng),從中提取張量型電磁信號(hào),不僅能夠獲取地層縱橫向電導(dǎo)率、地層相對(duì)傾角與方位角信息,而且鑒于其交叉分量對(duì)地層邊界更敏感的特點(diǎn),能夠更有效實(shí)現(xiàn)對(duì)地層邊界的實(shí)時(shí)探測(cè),進(jìn)而更好地解決復(fù)雜油氣儲(chǔ)層評(píng)價(jià)與實(shí)時(shí)導(dǎo)向的問(wèn)題。為了實(shí)現(xiàn)方位隨鉆電磁傳播儀器相關(guān)參數(shù)的優(yōu)化設(shè)計(jì)(包含線(xiàn)圈系間距、工作頻率、傾斜線(xiàn)圈系的傾角等),并為隨鉆電磁資料的解釋與反演提供可靠理論依據(jù),本論文將根據(jù)隨鉆方位電磁傳播測(cè)井儀器的結(jié)構(gòu)特點(diǎn),基于柱坐標(biāo)系下電場(chǎng)矢勢(shì)和標(biāo)勢(shì)耦合勢(shì)方程研究建立與隨鉆方位電磁傳播測(cè)井技術(shù)相配套的三維數(shù)值模擬算法和軟件,并對(duì)其響應(yīng)特征進(jìn)行詳細(xì)的考察。主要研究?jī)?nèi)容如下:第一章,簡(jiǎn)要介紹電法測(cè)井儀器的發(fā)展歷程以及方位隨鉆電磁測(cè)井的研究背景與意義;仡欕姺y(cè)井?dāng)?shù)值模擬中的解析、半解析以及多種數(shù)值模擬算法,并對(duì)其優(yōu)缺點(diǎn)進(jìn)行分析總結(jié)。最后,陳述本論文的主要研究?jī)?nèi)容與創(chuàng)新點(diǎn)。第二章,根據(jù)方位隨鉆電磁測(cè)井儀器的典型線(xiàn)圈系結(jié)構(gòu)以及電磁疊加原理,通過(guò)引入完全各向異性地層中電偶極子并矢Green函數(shù),給出傾斜發(fā)射線(xiàn)圈電場(chǎng)以及傾斜接收線(xiàn)圈上感應(yīng)電動(dòng)勢(shì)的計(jì)算公式,并利用電場(chǎng)混合勢(shì)(矢勢(shì)和標(biāo)勢(shì))克服電磁場(chǎng)數(shù)值模擬過(guò)程中的低感應(yīng)數(shù)問(wèn)題。針對(duì)圓柱狀鉆鋌表面的特點(diǎn),建立柱坐標(biāo)系下Lebedev網(wǎng)格剖分方法,以提高數(shù)值模擬效率,即在?、z方向采用漸進(jìn)網(wǎng)格、?方向用等間距網(wǎng)格并通過(guò)延拓虛點(diǎn)技術(shù)處理柱坐標(biāo)系下電磁場(chǎng)的周期性問(wèn)題。此外,利用標(biāo)準(zhǔn)均質(zhì)化技術(shù)計(jì)算了控制單元的等價(jià)電導(dǎo)率以提高非均質(zhì)網(wǎng)格上的離散精度。在此基礎(chǔ)上,將應(yīng)用柱坐標(biāo)系下的三維有限體積法,進(jìn)一步推導(dǎo)出電場(chǎng)矢勢(shì)和標(biāo)勢(shì)Helmholtz方程與電流源離散方法,得到一個(gè)柱坐標(biāo)系下交錯(cuò)網(wǎng)格節(jié)點(diǎn)上電場(chǎng)耦合勢(shì)的大型稀疏方程,并利用不完全LU分解(ILUT)預(yù)處理與穩(wěn)定雙共軛梯度法(Bi CGSTAB)迭代法和Pardiso并行直接求解法這兩種方法求解大型代數(shù)方程組。最后,利用數(shù)值結(jié)果對(duì)算法的可靠性進(jìn)行檢驗(yàn)。第三章,詳細(xì)討論了發(fā)射線(xiàn)圈的兩種近似處理方法:疊加電偶極子與疊加磁偶極子,并對(duì)兩種近似情況下的儀器響應(yīng)進(jìn)行對(duì)比。數(shù)值結(jié)果表明:不論發(fā)射線(xiàn)圈和接收線(xiàn)圈是否傾斜,用疊加電偶極子模擬發(fā)射線(xiàn)圈的測(cè)井響應(yīng)更能保持較高的精度;而只有在發(fā)射線(xiàn)圈和接收線(xiàn)圈有一個(gè)保持軸向時(shí)、或者小鉆鋌的情況下,用疊加磁偶極子近似發(fā)射線(xiàn)圈的測(cè)井響應(yīng)才能保持較高的精度。最終,得出結(jié)論:在方位隨鉆測(cè)井儀器測(cè)井響應(yīng)的數(shù)值模擬中,用疊加電偶極子近似模擬發(fā)射線(xiàn)圈更有效。第四章,利用柱坐標(biāo)系下有限體積法建立的三維數(shù)值模擬軟件,具體考察了傾斜方位隨鉆線(xiàn)圈系(軸向收發(fā)線(xiàn)圈、軸向發(fā)射與傾斜接收線(xiàn)圈、傾斜發(fā)射與軸向接收線(xiàn)圈、傾斜收發(fā)線(xiàn)圈組合成的三線(xiàn)圈系或四線(xiàn)圈系測(cè)量方式)在鉆鋌旋轉(zhuǎn)角固定不變,以及鉆鋌連續(xù)旋轉(zhuǎn)時(shí)方位隨鉆電磁響應(yīng)的變化特征,作為對(duì)比還考察了共面方位線(xiàn)圈系(三線(xiàn)圈、四線(xiàn)圈組合方式)在鉆鋌連續(xù)旋轉(zhuǎn)時(shí)的電磁響應(yīng)。在鉆鋌旋轉(zhuǎn)角固定不變的情況下:垂直井中,井眼泥漿電導(dǎo)率對(duì)傾斜方位隨鉆線(xiàn)圈系(軸向收發(fā)線(xiàn)圈、軸向發(fā)射與傾斜接收線(xiàn)圈、傾斜發(fā)射與軸向接收線(xiàn)圈)隨鉆測(cè)井的影響會(huì)很小;泥漿電阻率對(duì)傾斜收發(fā)線(xiàn)圈系隨鉆測(cè)井響應(yīng)的影響明顯變大,且在層邊界附近由于積累面電荷影響,幅度比和相位差曲線(xiàn)會(huì)出現(xiàn)明顯“犄角”。而在傾斜井中,隨著井眼傾角的增大,無(wú)論是軸向線(xiàn)圈還是傾斜線(xiàn)圈,井眼泥漿對(duì)測(cè)井響應(yīng)均產(chǎn)生較大影響,且井眼泥漿對(duì)完全傾斜收發(fā)線(xiàn)圈系響應(yīng)的影響更大。三線(xiàn)圈系在測(cè)井中會(huì)導(dǎo)致測(cè)井響應(yīng)整體偏移,四線(xiàn)圈系由于具有對(duì)稱(chēng)的線(xiàn)圈系結(jié)構(gòu),消除了偏移。因此,四線(xiàn)圈系的測(cè)井響應(yīng)更能精確反應(yīng)層邊界的位置。在鉆鋌連續(xù)旋轉(zhuǎn)的情況下:均勻的各向異性地層中,幅度比和相位差隨方位角變化并在180度時(shí)左右對(duì)稱(chēng),且井眼傾角增大時(shí)方位角變化對(duì)測(cè)井響應(yīng)的影響會(huì)更大。方位隨鉆電磁測(cè)井儀器的一個(gè)主要功能是具有較強(qiáng)的探邊能力,從而達(dá)到實(shí)時(shí)地質(zhì)導(dǎo)航的目的。為了比較不同結(jié)構(gòu)儀器的探邊能力,將不同結(jié)構(gòu)的儀器傾斜穿過(guò)上下對(duì)稱(chēng)的三層地層模型,考察其對(duì)層邊界的響應(yīng)特征。不同深度點(diǎn)、不同儀器方位角下的儀器響應(yīng)三維圖顯示:線(xiàn)圈偏移會(huì)導(dǎo)致單邊儀器在層邊界進(jìn)、出位置有明顯不同,并且在對(duì)稱(chēng)的地層模型中產(chǎn)生的幅度比和相位差響應(yīng)不對(duì)稱(chēng);而雙邊儀器由于采用了對(duì)稱(chēng)的儀器結(jié)構(gòu),在層邊界的進(jìn)、出位置幾乎對(duì)稱(chēng),整體的幅度比和相位差響應(yīng)也幾乎對(duì)稱(chēng)。此外,當(dāng)工作頻率降低時(shí),幅度比響應(yīng)和相位差響應(yīng)變化相對(duì)減小。這說(shuō)明工作頻率越低,線(xiàn)圈方位角對(duì)方位隨鉆電磁測(cè)井影響越小。與采用傾斜線(xiàn)圈系的儀器相比,采用水平共面線(xiàn)圈系的儀器對(duì)層邊界更敏感,具有更強(qiáng)的探邊能力。第五章,對(duì)全文進(jìn)行了總結(jié)并對(duì)下一步工作進(jìn)行展望。
[Abstract]:In modern oil and gas exploration and development, the LWD technology can be applied to real-time monitoring and geological guidance of the drill collar, in order to effectively improve the drilling success rate, oil and gas recovery and single well productivity. The principle is to install the measuring device near the drill collar, so that it can be used in the drilling collar. Effective measurements are carried out and the results are transmitted to the ground or stored in real time. As the formation of the rigid drill is less affected by mud invasion, the real parameters of the formation are more easily obtained with the drilling well logging. After more than thirty years of development, the logging has included resistivity, acoustic wave, neutron and density, nuclear magnetic and well wall imaging, etc. All logging methods can not only carry out geological guidance, but also make a comprehensive evaluation of complex oil and gas reservoirs. Azimuth drilling electromagnetic logging is a new type of drilling well logging technology, which can better solve the problem of complex oil and gas exploration and development in the anisotropic formation. The instrument is composed of the inclined coil system installed on the drill collar. The synthetic emission and receiving system uses the rotation of the drill collar during the drilling process to measure the electromagnetic field on different azimuth angles and extract the tensor electromagnetic signal from it. It can not only obtain the longitudinal and transverse conductivity of the formation, the relative inclination and azimuth information of the formation, but also can be more effective in view of the more sensitive characteristics of the cross section to the boundary of the formation. In order to realize the optimization design of the related parameters of the azimuth drilling electromagnetic transmission instrument (including the coil distance, the working frequency, the inclination of the tilted coil system, etc.), and provide a reliable theory for the interpretation and inversion of the electromagnetic data of the drilled. According to the structure characteristics of the electromagnetic propagation logging tool with the drilling azimuth, the three-dimensional numerical simulation algorithm and software matching with the drilling azimuth electromagnetic propagation logging technology are established on the basis of the field vector potential and the potential coupling potential equation in the cylindrical coordinate system, and the response characteristics are investigated in detail. The main contents are as follows: In the first chapter, the development of the electrical logging tool and the background and significance of the azimuth drilling electromagnetic logging are briefly introduced. The analytical, semi analytical and several numerical simulation algorithms in the numerical simulation of electrical logging are reviewed, and their advantages and disadvantages are analyzed and summarized. Finally, the main contents and innovation points of this paper are stated. The second chapter, the root of this paper, is the root of the paper. According to the typical coil structure and electromagnetic superposition principle of azimuth drilling electromagnetic logging instrument, by introducing the electric dipole Green function in the fully anisotropic formation, the calculation formula of the electric field of the tilted launching coil and the induction electromotive force on the inclined receiving coil is given, and the number of electromagnetic fields is overcome by the mixed potential of the electric field (vector potential and the potential). According to the characteristics of the cylindrical drill collar, the Lebedev mesh generation method in cylindrical coordinate system is established to improve the efficiency of numerical simulation, namely, the gradual grid in the direction of Z, the direction of the equidistance grid and the periodic problem of the electromagnetic field in the cylindrical coordinate system by the extension virtual point technology. By using the standard homogenization technique, the equivalent conductivity of the control unit is calculated to improve the discrete precision on the heterogeneous grid. On this basis, the three-dimensional finite volume method in the cylindrical coordinate system is applied to further deduce the discrete method of the vector potential and the standard potential Helmholtz equation and the current source, and get a staggered grid node under a cylindrical coordinate system. The large sparse equations of the electric field coupling potential are used to solve large algebraic equations by using the two methods of incomplete LU decomposition (ILUT) preconditioning and stable dual conjugate gradient (Bi CGSTAB) iterative method and Pardiso parallel direct solution. Finally, the reliability of the algorithm is tested by numerical results. The third chapter discusses the launching coils in detail. Two approximate methods: superposition electric dipole and superimposed magnetic dipole, and comparison of the response of the instrument in the two approximate cases. The numerical results show that the log response of the emitter coil is more accurate, no matter whether the transmitting coil and the receiving coil are inclined or not. In the case of keeping an axial, or a small drill collar, the log response of a superimposed magnetic dipole is approximated by a superimposed magnetic dipole. Finally, the conclusion is that in the numerical simulation of the logging response of the azimuth logging instrument, the fourth chapter is used to simulate the launching coils. The three-dimensional numerical simulation software established by the finite volume method in the standard system is used to investigate the oblique azimuth with the drill coil system (axial transceiver coil, axial transmitting and tilting receiving coils, inclined launching and axial receiving coils, three coils or four coil measuring modes formed by the tilted transceiver coils), and the rotation angle of the drill collar is fixed and the drill pipe is fixed. As a contrast, the electromagnetic response of the coplanar azimuth coil system (three coils, four coils combined) in the continuous rotation of the drill collar is also investigated. Under the condition of fixed rotation angle of the drill collar, the electrical conductivity of the mud slurry in the borehole is in the direction of the axial transmission line (axial transmission line). The influence of the ring, the axial and the inclined receiving coils, the tilted and the axial receiving coils will be very small. The influence of the mud resistivity on the response of the slant receiving and receiving coil is obviously larger, and the amplitude ratio and the phase difference curve will appear obvious "horns" in the vicinity of the layer boundary due to the charge of the accumulation surface. In the well, with the increase of the angle of the borehole, both the axial and the inclined coils, the borehole mud has a great influence on the log response, and the well mud has a greater impact on the response of the fully inclined transceiver system. The three coil system will lead to the overall deviation of the log response and the four coil system has a symmetrical coil system. Therefore, the logging response of the four coil system is more accurate to the location of the reaction layer boundary. In the case of continuous rotation of the drill collar, the amplitude ratio and phase difference vary with the azimuth angle and are symmetrical at 180 degrees in homogeneous anisotropic formation, and the influence of the angle change on the logging response will be greater when the well angle is increased. One of the main functions of the electromagnetic logging tool is that it has strong edge detection ability to achieve the purpose of real-time geological navigation. In order to compare the edge detection ability of different structural instruments, the instruments of different structures are inclined through the upper and lower symmetrical three layer formation model to investigate the response characteristics to the layer boundary, different depth points and different instruments. The three-dimensional diagram of the instrument response in the azimuth angle shows that the coil offset will lead to the single side instrument in the layer boundary, and the output position is distinctly different, and the amplitude ratio and the phase difference in the symmetrical formation model are asymmetric. The amplitude ratio and the phase difference response are also almost symmetrical. In addition, when the working frequency is reduced, the amplitude is relatively smaller than the response and the phase difference response. This shows that the lower the working frequency, the smaller the influence of the coil azimuth to the electromagnetic logging. Compared with the inclining coil system, the horizontal coils system is used for the layer boundary. The fifth chapter summarizes the whole paper and looks forward to the next step.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:O241.82;O441

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 司馬立強(qiáng),甘秀娥,梁從軍,王本奇;空氣井測(cè)井響應(yīng)現(xiàn)象分析與探討[J];測(cè)井技術(shù);2003年06期

2 楊椺;計(jì)算全三維電磁測(cè)井響應(yīng)的有限元程序(英文)[J];地震地質(zhì);2001年02期

3 張庚驥;交流電測(cè)井響應(yīng)的積分方程解法[J];石油大學(xué)學(xué)報(bào)(自然科學(xué)版);2001年01期

4 沈金松;用垂直數(shù)值模式匹配方法計(jì)算多頻電磁測(cè)井響應(yīng)[J];測(cè)井技術(shù);2002年05期

5 何彬;匡鄧暉;王大魁;;海域天然氣水合物測(cè)井響應(yīng)的研究進(jìn)展[J];科技信息;2013年14期

6 蘇艷麗;汪忠浩;潘拓;葉勇;;薄層測(cè)井響應(yīng)高分辨處理方法及其應(yīng)用[J];油氣地球物理;2012年02期

7 曹宇;張超謨;張占松;張沖;熊鐳;;裂縫型儲(chǔ)層電成像測(cè)井響應(yīng)三維數(shù)值模擬[J];巖性油氣藏;2014年01期

8 宋汐瑾;黨瑞榮;董昭;;井間電磁測(cè)井響應(yīng)建模與仿真[J];核電子學(xué)與探測(cè)技術(shù);2010年09期

9 范宜仁;朱學(xué)娟;;天然氣水合物儲(chǔ)層測(cè)井響應(yīng)與評(píng)價(jià)方法綜述[J];測(cè)井技術(shù);2011年02期

10 劉振華;仵杰;張建華;;陣列感應(yīng)(AIT)測(cè)井響應(yīng)的連續(xù)反演[J];地球物理學(xué)進(jìn)展;2006年04期

相關(guān)會(huì)議論文 前7條

1 劉業(yè)新;;測(cè)井響應(yīng)的分形特性研究[A];1995年中國(guó)地球物理學(xué)會(huì)第十一屆學(xué)術(shù)年會(huì)論文集[C];1995年

2 陳木銀;高杰;蔡建榮;;水平井、大斜度井中電磁波測(cè)井響應(yīng)數(shù)值模擬方法研究[A];中國(guó)地球物理學(xué)會(huì)年刊2002——中國(guó)地球物理學(xué)會(huì)第十八屆年會(huì)論文集[C];2002年

3 高順莉;;AVO技術(shù)在東海麗水地區(qū)的應(yīng)用研究[A];第五次東海石油地質(zhì)研討會(huì)論文集[C];2004年

4 高杰;尚作源;;利用積分變換法實(shí)現(xiàn)2MHz隨鉆電測(cè)井響應(yīng)快速計(jì)算[A];1999年中國(guó)地球物理學(xué)會(huì)年刊——中國(guó)地球物理學(xué)會(huì)第十五屆年會(huì)論文集[C];1999年

5 佟文琪;房德斌;康國(guó)軍;陳森鑫;;用FDTD法模擬多頻電磁波測(cè)井響應(yīng)[A];1999年中國(guó)地球物理學(xué)會(huì)年刊——中國(guó)地球物理學(xué)會(huì)第十五屆年會(huì)論文集[C];1999年

6 張雷;陳浩;肖加奇;王秀明;;利用數(shù)值模式匹配法模擬隨鉆電磁波測(cè)井響應(yīng)[A];中國(guó)地球物理2010——中國(guó)地球物理學(xué)會(huì)第二十六屆年會(huì)、中國(guó)地震學(xué)會(huì)第十三次學(xué)術(shù)大會(huì)論文集[C];2010年

7 高杰;陳本銀;尚作源;;各向異性地層中隨鉆電測(cè)井響應(yīng)數(shù)值模擬研究[A];中國(guó)地球物理.2003——中國(guó)地球物理學(xué)會(huì)第十九屆年會(huì)論文集[C];2003年

相關(guān)博士學(xué)位論文 前2條

1 王浩森;基于柱坐標(biāo)系下電場(chǎng)耦合勢(shì)三維有限體積法研究方位隨鉆電磁測(cè)井響應(yīng)[D];吉林大學(xué);2016年

2 楊震;非均勻復(fù)雜地層隨鉆電磁波測(cè)井響應(yīng)研究[D];中國(guó)石油大學(xué);2009年

相關(guān)碩士學(xué)位論文 前3條

1 董建黨;各向異性地層電磁測(cè)井響應(yīng)的時(shí)域有限差分方法研究[D];中國(guó)石油大學(xué);2008年

2 張敏;水淹巖層測(cè)井響應(yīng)機(jī)理及解釋研究[D];浙江大學(xué);2009年

3 趙玲;基于時(shí)域有限差分法的隨鉆電磁波測(cè)井響應(yīng)數(shù)值計(jì)算研究[D];西安石油大學(xué);2009年

,

本文編號(hào):2154555

資料下載
論文發(fā)表

本文鏈接:http://www.lk138.cn/kejilunwen/yysx/2154555.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶(hù)035c3***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com