一類非線性二階差分方程Robin問(wèn)題多個(gè)正解的存在性
發(fā)布時(shí)間:2018-07-27 17:34
【摘要】:用不動(dòng)點(diǎn)指數(shù)理論,考慮一類非線性二階差分方程Robin問(wèn)題{-△~2u(t-1)=λf(u(t)),t∈Z[1,T-1],△u(0)=0,u(T)=0多個(gè)正解的存在性,其中:Z[1,T-1]={1,2,…,T-1};f:[0,∞)→[0,∞)為連續(xù)函數(shù)且有多個(gè)零點(diǎn);λ0為參數(shù)在一定的假設(shè)條件下,討論其非線性項(xiàng)零點(diǎn)數(shù)與問(wèn)題解數(shù)之間的關(guān)系.
[Abstract]:By using the fixed point exponent theory, we consider the existence of more than 0 positive solutions for a class of nonlinear second-order difference equation Robin problems {-n2u (t-1) = 位 f (u (t) t 鈭,
本文編號(hào):2148630
[Abstract]:By using the fixed point exponent theory, we consider the existence of more than 0 positive solutions for a class of nonlinear second-order difference equation Robin problems {-n2u (t-1) = 位 f (u (t) t 鈭,
本文編號(hào):2148630
本文鏈接:http://www.lk138.cn/kejilunwen/yysx/2148630.html
最近更新
教材專著