輪胎動(dòng)平衡在線檢測試驗(yàn)機(jī)研制及其關(guān)鍵技術(shù)研究
本文選題:輪胎動(dòng)平衡 + 在線檢測 ; 參考:《山東大學(xué)》2015年博士論文
【摘要】:在交通運(yùn)輸業(yè)和汽車工業(yè)飛速發(fā)展的帶動(dòng)下,輪胎工業(yè)取得了飛躍式的發(fā)展。我國輪胎產(chǎn)量名列世界前列,但高品質(zhì)且具有代表性的品牌輪胎尚為緊缺。歐美等國家則通過不斷修訂檢測標(biāo)準(zhǔn)提高輪胎質(zhì)量要求,從汽車生產(chǎn)商到輪胎銷售商對汽車輪胎的質(zhì)量檢驗(yàn)均提出了更高要求。在其嚴(yán)格的質(zhì)量管理控制體系中,輪胎的動(dòng)平衡性能倍受重視。因?yàn)檐囕v高速行駛過程中,輪胎的不平衡量會(huì)導(dǎo)致車輪的顛簸和搖擺,影響車輛行駛的操縱性能、平穩(wěn)性能、安全性能好舒適性能。若長時(shí)間行駛會(huì)導(dǎo)致胎冠升溫,振動(dòng)持續(xù)不斷地沖擊輪胎最薄弱的部位使之老化引起爆胎。由輪胎引起的交通事故在我國逐年遞增,關(guān)系著許多人的生命安全。通過對輪胎質(zhì)量的在線檢測和質(zhì)量分析,基于檢測數(shù)據(jù)技術(shù)人員可以追溯和審核各項(xiàng)工藝參數(shù),探索高品質(zhì)輪胎生產(chǎn)的關(guān)鍵技術(shù)和規(guī)律,為工藝的改進(jìn)提供理論指導(dǎo)。同時(shí),降低次品胎比率,減少污染,節(jié)約能源,向綠色輪胎方向發(fā)展。目前,國內(nèi)輪胎生產(chǎn)商占有的輪胎試驗(yàn)機(jī)數(shù)量有限甚至沒有配備,僅山東省內(nèi)就分布有上百家的輪胎小企業(yè),規(guī)模小、技術(shù)裝備差、輪胎廢品率高、浪費(fèi)能源。輪胎質(zhì)量檢測技術(shù)和設(shè)備無法滿足輪胎生產(chǎn)企業(yè)對輪胎研發(fā)、質(zhì)量檢測和控制、工藝參數(shù)追溯的要求。再者,對大批量的待檢輪胎做到每胎必檢,檢測效率是重大挑戰(zhàn),對于在線檢測尤其嚴(yán)峻。因此,研發(fā)高精度、高性價(jià)比、高效率的輪胎質(zhì)量在線檢測試驗(yàn)設(shè)備一直是汽車生產(chǎn)企業(yè)和輪胎生產(chǎn)企業(yè)關(guān)注的重點(diǎn)。本文基于生產(chǎn)和檢測現(xiàn)場的工藝流程和實(shí)際使用需求,研制新型輪胎動(dòng)平衡在線檢測試驗(yàn)機(jī)。借助于力學(xué)分析、數(shù)學(xué)建模、計(jì)算分析軟件和實(shí)驗(yàn)研究等方法,研究并攻克其關(guān)鍵技術(shù)。主要研究內(nèi)容包括:1.提出了兩種不同結(jié)構(gòu)的輪胎動(dòng)平衡在線檢測試驗(yàn)機(jī)的幾何模型和在線檢測智能控制解算系統(tǒng)。2.根據(jù)動(dòng)力學(xué)理論,對測試過程中受到交變動(dòng)態(tài)載荷作用的主軸系統(tǒng)進(jìn)行模態(tài)分析。采用傳遞矩陣方法和有限元方法,求解下主軸系統(tǒng)、上主軸系統(tǒng)、上下主軸耦聯(lián)系統(tǒng)的臨界轉(zhuǎn)速和固有頻率。探討軸承剛度、軸承間距、“輪輞-輪胎”質(zhì)量以及外懸伸量對臨界轉(zhuǎn)速和固有頻率的影響。為測量轉(zhuǎn)速的選擇提供指導(dǎo),以避開共振區(qū)域,保證設(shè)備運(yùn)行的穩(wěn)定性和使用的安全性。3.根據(jù)理論力學(xué)空間力系的平移等效原理,提出輪胎動(dòng)平衡試驗(yàn)機(jī)的動(dòng)力學(xué)模型;谳喬(dòng)平衡試驗(yàn)機(jī)的測控原理,簡化并構(gòu)建“主軸-輪輞-輪胎”的解算模型、量標(biāo)定模型和偏心補(bǔ)償模型。動(dòng)平衡測量過程是一個(gè)多變量非線性動(dòng)態(tài)間接的測量過程,采用基于實(shí)驗(yàn)的影響系數(shù)法對系統(tǒng)進(jìn)行量的標(biāo)定。基于黑箱理論,采用最小二乘方法求解量標(biāo)定的復(fù)影響系數(shù)。偏心補(bǔ)償主要采用基2的整次冪反向消除法進(jìn)行偶數(shù)次測量計(jì)算試驗(yàn)機(jī)系統(tǒng)自身的不平衡量。4.影響量標(biāo)定系數(shù)解算準(zhǔn)確度的關(guān)鍵因素的研究分析;谝氲摹岸嗉壿嗇y”和“段差”測量方式,考慮輪輞寬度對輪胎不平衡量解算的影響,修正量標(biāo)定模型,提出了等效解算模型和算法。以實(shí)驗(yàn)研究方式,探討傳感器預(yù)緊力、電荷放大器量程與分辨率、標(biāo)定砝碼重量等關(guān)鍵參數(shù)對測試結(jié)果的影響;谏舷轮鬏S鎖緊結(jié)構(gòu)和工作方式,提出無胎標(biāo)定方法。降低標(biāo)定操作引入的裝夾誤差,消除輪胎胎壓波動(dòng)、胎圈潤滑效果欠佳等因素導(dǎo)致的不穩(wěn)定性,縮短標(biāo)定時(shí)間。以零校正方式驗(yàn)證無胎標(biāo)定方式具有略高的穩(wěn)定性和重復(fù)性。5.影響系統(tǒng)不平衡量分離解算和系統(tǒng)穩(wěn)定性的關(guān)鍵因素的研究分析。提出兩種新型補(bǔ)償輪輞結(jié)構(gòu),將系統(tǒng)不平衡量降至理想范圍。新型補(bǔ)償輪輞的使用,結(jié)合偏心補(bǔ)償操作和算法,可獲得越來越精確的量標(biāo)定影響系數(shù)和系統(tǒng)自身不平衡量。再者,基于大量工程實(shí)踐過程中出現(xiàn)的上下輪輞相對位置錯(cuò)位現(xiàn)象,提出了在線糾偏補(bǔ)償策略,并組建了控制系統(tǒng)。6.提出了“自適應(yīng)分層——自相關(guān)閾值”的小波閾值降噪方法。采用余弦窗FFT插值改進(jìn)算法進(jìn)行頻譜分析,有效地抑制了頻譜泄露和柵欄效應(yīng),為信號特征的準(zhǔn)確提取奠定了基礎(chǔ);诖罅康默F(xiàn)場試驗(yàn),采用零校正測試和MN測試方式對測量結(jié)果的準(zhǔn)確度和穩(wěn)定性進(jìn)行驗(yàn)證。經(jīng)鑒定,達(dá)到了國內(nèi)領(lǐng)先水平。該試驗(yàn)機(jī)關(guān)鍵技術(shù)的研究,對輪胎動(dòng)平衡試驗(yàn)機(jī)的設(shè)計(jì)提供了理論和技術(shù)支持,為研制開發(fā)具有完全自主知識產(chǎn)權(quán)的高精度的輪胎動(dòng)平衡試驗(yàn)機(jī)指出了一條切實(shí)可行的途徑,對提高我國輪胎質(zhì)量有較大的理論意義和實(shí)際應(yīng)用價(jià)值。
[Abstract]:With the rapid development of transportation and automobile industry, the tire industry has made a leap forward development. Our tire production ranks the top in the world, but high quality and representative brand tyres are still scarce. Countries such as Europe and America improve the quality requirements of tire by constantly revising the testing standards, from automobile manufacturers to tire sales. There is a higher requirement for the quality inspection of automobile tires. In its strict quality management and control system, the dynamic balance performance of the tire is highly valued. Because the unbalance of the tire will lead to the bump and rocking of the wheel during the high speed of the vehicle, it will affect the operating performance, the stability and the safety of the vehicle. "Yes. If a long time runs, it will cause the crown to rise, and the vibration continues to impact the weakest part of the tire to cause the blowout. The traffic accidents caused by the tires are increasing year by year in our country, which is related to the safety of many people. Through the on-line testing and quality analysis of the quality of the tires, the technicians based on the testing data can pursue it." Review and review the technical parameters, explore the key technology and rules of high quality tire production, provide theoretical guidance for the improvement of the technology. At the same time, reduce the ratio of the secondary tire, reduce pollution, save energy, and develop to the direction of green tires. At present, the number of tire testing machines owned by domestic tire manufacturers is limited or not, only in Shandong province. There are hundreds of small tire enterprises with small size, poor technical equipment, high tire scrap rate and waste of energy. Tire quality testing technology and equipment can not meet tire production enterprises' tire development, quality inspection and control, process parameter tracing requirements. Major challenges are particularly severe for online testing. Therefore, research and development of high precision, cost-effective and efficient tire quality on-line testing equipment has always been the focus of automobile production enterprises and tire production enterprises. Based on the process flow and actual use demand of the production and testing site, this paper develops a new type of tire dynamic balance on-line inspection. With the help of mechanical analysis, mathematical modeling, calculation and analysis software and experimental research, the key technologies are studied and tackled. The main contents include: 1. the geometric model of the on-line test machine for dynamic balancing of tires and the online detection intelligent control solution system (.2.) of two different structures are presented. In the testing process, the spindle system of the alternating dynamic load is analyzed. Using the transfer matrix method and the finite element method, the critical speed and natural frequency of the spindle system, the upper spindle system, the upper and lower spindle coupling system are solved. The bearing stiffness, the bearing space, the wheel rim tires quality and the outer hanging quantity are discussed. The influence of rotational speed and natural frequency. Provide guidance for the selection of rotational speed, in order to avoid the resonance area, ensure the stability of the operation of the equipment and the safety of the use.3., based on the translation equivalence principle of the spatial force system of the theoretical mechanics, the dynamic model of the tire dynamic balance test machine is proposed. The calculation model of "spindle wheel rim tires", the calibration model and the eccentricity compensation model are constructed. The dynamic balance measurement process is a multi variable nonlinear dynamic indirect measurement process, and the measurement of the system is calibrated by the influence coefficient method based on the experiment. Based on the black box theory, the least square method is used to solve the complex influence of the calibration. Coefficient. The eccentricity compensation mainly adopts the whole power inverse elimination method of base 2 to carry out the research and analysis of the key factors of the calculation accuracy of the calibration coefficient of the unbalance quantity.4. influence of the even number of measurement and calculation test machine system itself. Based on the introduction of the "multistage rim" and "segment difference" method, the wheel rim width is considered for the unbalance of the tire. The influence of the calculation, the calibration model and the equivalent calculation model and algorithm. The influence of the key parameters such as the pretightening force of the sensor, the range and resolution of the charge amplifier, the weight of the weight and other key parameters on the test results are discussed by the experimental research method. The non tire calibration method is proposed based on the upper and lower spindle locking structure and working mode. In order to eliminate the instability and shorten the calibration time caused by the tire pressure fluctuation, the poor lubrication effect of the tire and so on, the zero correction mode has been used to verify the analysis of the key factors of the unbalance calculation and the stability of the system system with high stability and repeatability.5.. Two The new compensation wheel rim structure will reduce the system imbalance to the ideal range. The use of the new compensation wheel rim, combined with eccentricity compensation operation and algorithm, can obtain more and more accurate calibration influence coefficient and system self imbalance. Furthermore, based on a large number of engineering practice, the relative position dislocation of the upper and lower rim of the rim is proposed. The online correction compensation strategy is proposed, and the control system.6. has set up the wavelet threshold denoising method of "adaptive Stratification - autocorrelation threshold". Using the cosine window FFT interpolation to improve the spectrum analysis, it effectively inhibits the spectrum leakage and the fence effect, and lays the foundation for the accurate extraction of signal characteristics. The accuracy and stability of the measurement results are verified by the zero correction test and MN test. The key technology of the test machine is studied. The theoretical and technical support is provided for the design of the tire dynamic balance test machine, and the high precision of the complete independent intellectual property is developed for the research and development of the test machine. The tire dynamic balancing tester has pointed out a practical way, which has great theoretical significance and practical application value for improving the tire quality in China.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:U467.4
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陶玉貴;;一種新型電荷放大器的研究與設(shè)計(jì)[J];安徽師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年05期
2 王永山;石曉梅;趙立臻;田興科;;FIR數(shù)字帶通濾波器的MATLAB設(shè)計(jì)與DSP實(shí)現(xiàn)[J];車輛與動(dòng)力技術(shù);2010年03期
3 李金田;壓電傳感器與前置放大器的配接[J];傳感器技術(shù);2004年01期
4 孫百紅;宋少偉;;基于小波分析的發(fā)動(dòng)機(jī)轉(zhuǎn)動(dòng)慣量測量信號特征提取[J];火箭推進(jìn);2010年06期
5 鄧旺群,高德平,劉金南,雷沫枝;轉(zhuǎn)子高速動(dòng)平衡技術(shù)在渦軸發(fā)動(dòng)機(jī)整機(jī)減振中的作用[J];航空動(dòng)力學(xué)報(bào);2005年01期
6 曹繼光,鄒靜,鐘偉芳;轉(zhuǎn)子主慣性軸傾角與不平衡量綜合測量系統(tǒng)[J];華中理工大學(xué)學(xué)報(bào);2000年05期
7 鄭建彬 ,田春仿;基于離散小波變換的動(dòng)平衡機(jī)不平衡量提取算法研究[J];測控技術(shù);2002年08期
8 張玉山;亓虎堂;;壓電式傳感器的準(zhǔn)靜態(tài)校準(zhǔn)[J];計(jì)量與測試技術(shù);2009年01期
9 劉健,潘雙夏,楊克己,馮培恩;動(dòng)平衡測量數(shù)字濾波方法研究[J];機(jī)械強(qiáng)度;2005年01期
10 張雅麗;李鐵軍;王寶光;趙海文;王亞飛;;曲軸組件動(dòng)平衡檢測系統(tǒng)中振動(dòng)臺(tái)設(shè)計(jì)[J];機(jī)械設(shè)計(jì);2006年01期
相關(guān)博士學(xué)位論文 前2條
1 劉健;多工位全自動(dòng)動(dòng)平衡機(jī)設(shè)計(jì)方法及關(guān)鍵技術(shù)研究[D];浙江大學(xué);2005年
2 楊曉紅;不平衡量信號的精密譜分析及其在砂輪動(dòng)平衡測控儀中的應(yīng)用[D];中國科學(xué)院研究生院(長春光學(xué)精密機(jī)械與物理研究所);2006年
相關(guān)碩士學(xué)位論文 前5條
1 胡賢勇;摩托車發(fā)動(dòng)機(jī)曲柄連桿機(jī)構(gòu)動(dòng)平衡試驗(yàn)裝置的設(shè)計(jì)與研究[D];重慶大學(xué);2003年
2 陳振東;載重輪胎動(dòng)平衡實(shí)驗(yàn)機(jī)若干關(guān)鍵技術(shù)的研究[D];天津大學(xué);2007年
3 樊明;精密離心機(jī)動(dòng)平衡系統(tǒng)實(shí)現(xiàn)中的幾個(gè)問題研究[D];哈爾濱工業(yè)大學(xué);2007年
4 王昀績;精密離心機(jī)動(dòng)平衡系統(tǒng)控制方法研究[D];哈爾濱工業(yè)大學(xué);2008年
5 李宏玲;渦輪增壓器轉(zhuǎn)子支撐系統(tǒng)臨界轉(zhuǎn)速計(jì)算及非線性動(dòng)力學(xué)特性研究[D];合肥工業(yè)大學(xué);2013年
,本文編號:1824119
本文鏈接:http://www.lk138.cn/falvlunwen/zhishichanquanfa/1824119.html