中国韩国日本在线观看免费,A级尤物一区,日韩精品一二三区无码,欧美日韩少妇色

當前位置:主頁 > 碩博論文 > 工程博士論文 >

新型成炭劑的設計及其阻燃聚合物材料的熱穩(wěn)定性和燃燒性能的研究

發(fā)布時間:2018-08-29 09:19
【摘要】:現(xiàn)如今,聚合物材料因具有耐磨性、耐腐蝕性、和電絕緣性等優(yōu)異的性能,在我們?nèi)粘I钪杏兄鴱V泛的應用。同時,它們由于其自身的易燃性被大家所熟知。一旦在住所,運輸和公共場所中發(fā)生火災,火焰與高溫極易使聚合物材料熔化并且使其產(chǎn)生熔體滴淌,進而導致火焰蔓延的速度增加并伴隨有毒氣體和煙霧的產(chǎn)生。聚合物材料高度的易燃性不僅限制了其進一步的應用和發(fā)展,而且極其容易發(fā)生火災以及造成人員傷亡和嚴重的經(jīng)濟損失。因此,提高聚合物材料的阻燃性能是一項嚴峻的挑戰(zhàn)。論文對常用聚合物材料(聚丙烯和聚對苯二甲酸丁二醇酯)的阻燃技術和方法進行了系統(tǒng)綜述。根據(jù)分子設計,制備了一系列含磷/氮成炭劑,使其具備突出的成炭能力。這些聚合型成炭劑用于阻燃聚丙烯材料,以期獲得高效的阻燃性能和良好的耐水性。另外,為了解決聚磷酸銨(APP)耐水性差的問題,引入微膠囊化技術?紤]納米復合技術的優(yōu)勢,一步法制備含三嗪聚合型成炭劑(HCFAs)和剝離鈉基蒙脫土(Na-MMT)的新型納米復合阻燃劑。最后,為了進一步拓寬HCFA在其他聚合物材料中的應用,研究了玻纖增強聚對苯二甲酸丁二醇酯(GFPBT)/HCFA/二乙基次磷酸鋁(AlPi)的熱降解和燃燒特性。本論文的主要研究進展包含以下幾個部分。1.采用一步法合成一種新型、具有較高產(chǎn)率(86.5%)的環(huán)三磷腈類大分子成炭劑(CPCFA)。將其與微囊化聚磷酸銨(MAPP)復配引入到聚丙烯(PP)材料中,通過熔融共混法制備阻燃聚丙烯材料。與PP/MAPP對比發(fā)現(xiàn),PP/MAPP/CPCFA體系的極限氧指數(shù)(LOI)值明顯提高,垂直燃燒(UL-94)均能達到V-0級,并且對應的熱釋放速率(HRR)值明顯降低。以上研究結果表明MAPP和CPCFA的復配對PP有著很高的阻燃效率。熱重分析結果表明CPCFA的存在,可以促進PP/MAPP/CPCFA在氮氣和空氣下炭層的形成及提高殘?zhí)苛俊W詈?耐水性測試結果表明MAPP/CPCFA的比值在3:1和2:1時,聚合物材料具有優(yōu)異的耐水性能。在經(jīng)過熱水浸泡72h后,仍然可以達到UL-94 V-0等級。2.為了進一步提高阻燃劑的阻燃效率和降低其成本,制備了一系列基于三嗪結構的大分子成炭劑(HCFAs),并對其結構進行表征。使用傅里葉變換紅外光譜(FTIR)、固體核磁13C譜和元素分析(EA)對HCFAs的化學結構進行表征。熱重分析(TGA)和水溶性試驗用來評價HCFAs的熱穩(wěn)定性和耐水性能。相應的實驗結果表明HCFAs具有極好的熱穩(wěn)定性,突出的成炭能力和優(yōu)異的疏水性,可以作為高效的成炭劑應用到聚合物材料中。在這一系列三嗪類的大分子成炭劑中,含三嗪環(huán)和哌嗪環(huán)的PA-HCFA呈現(xiàn)出最好的熱穩(wěn)定性和極強的成炭能力。由HCFAs和聚磷酸銨(APP)組成的新型膨脹型阻燃劑(IFR)制備阻燃PP復合材料。采用TGA,極限氧指數(shù)(LOI),垂直燃燒試驗(UL-94),錐形量熱計(Cone)和耐水性測試分別來評價PP/IFR體系的熱降解,燃燒行為和耐水性能。在氮氣和空氣下的TGA結果表明,HCFA/APP可以提高PP/IFR的殘?zhí)苛亢透邷叵碌臒岱(wěn)定性。LOI和Cone結果表明,IFR(APP/HCFAs)的加入顯著的提高了 PP/IFR的LOI值并有效的降低了如熱釋放速率(HRR)等錐形量熱計參數(shù)。掃描電子顯微鏡(SEM)測試表明IFR(APP/HCFA)的引入有利于材料表面在燃燒過程中形成膨脹且致密的炭層,進而可以有效的阻止內(nèi)部的基材進一步降解和燃燒。此外,PP復合材料經(jīng)過熱水浸泡處理,它的阻燃性能并未受到很大的影響。3.作為膨脹型阻燃劑(IFR)中極其重要的組成成分,酸源聚磷酸銨(APP)由三聚氯氰和哌嗪進行改性來提高其耐水性。得到的改性聚磷酸銨(CFA-APP)通過FTIR,EA,X射線光電子能譜(XPS)和SEM等對其結構進行表征。水溶性測試表明CFA-APP具有優(yōu)異的耐水性。這種集碳源、酸源和氣源于一體的CFA-APP通過熔融共混法單獨用于制備阻燃PP。采用LOI,UL-94和錐形量熱計(CC)來研究PP,PP/APP和PP/CFA-APP體系的阻燃性能。相應的結果表明:與PP/APP相比,PP/CFA-APP復合材料具有更好的阻燃性能。當CFA-APP的添加量為25%時,PP/CFA-APP體系的LOI值提高到34.5%,并且可以通過垂直燃燒的V-0測試。CC結果表明,在同等添加量下,CFA-APP在PP基體中比APP具有更好的阻燃性能,包括更低的PHRR值,FGI和CO釋放量。通過熱重分析來評估PP復合材料的熱降解行為,與未改性的APP相比,三嗪類大分子成炭劑作為殼層可以有效地提高CFA-APP和PP復合材料的熱穩(wěn)定性。該殼層促進了 PP和CFA-APP的提前分解,進而導致在高溫下具有更好的熱穩(wěn)定性。這主要得益于它在聚合物材料表面形成高強度和高熱穩(wěn)定性的炭層,在燃燒期間可以有效地阻隔熱量和氧氣的傳遞和擴散。數(shù)碼照片和SEM圖直觀地說明,與PP/APP相比,PP/CFA-APP復合材料在燃燒過程中,形成了更緊湊和穩(wěn)定的炭層。以上結果表明,對APP進行化學改性是提高PP復合材料阻燃性能和耐水性的一種有效方法。4.選用一種有機改性蒙脫土(OMMT)作為阻燃協(xié)效劑,與聚磷酸銨(APP)和三嗪類大分子成炭劑(PA-HCFA)一同制備PP/IFR/OMMT復合材料。通過調(diào)節(jié)OMMT、APP和PA-HCFA不同的配比,來探討它們?nèi)咧g的協(xié)同阻燃作用。實驗結果表明,當IFR與OMMT的總添加量為20%時,顯現(xiàn)出積極的作用并且明顯的改善了 PP體系的阻燃性能。當阻燃劑的總添加量為20 wt%時,添加2 wt%的OMMT可以使PP體系的LOI值從29%升高到31.5%,并且通過垂直燃燒測試V-0級別。與此同時,熱釋放速率(HRR),總熱釋放量(THR)和CO2和CO的產(chǎn)生量均有不同程度的降低。利用SEM對PP體系炭層研究發(fā)現(xiàn),OMMT的存在可以促使聚合物材料表面在燃燒過程中形成致密而強勁的炭層,同時起到隔絕熱量、氧氣和可燃性氣體的溢出,從而致使PP/IFR/OMMT體系具有良好的阻燃性能。采用TGA來探討PP及其協(xié)同阻燃體系的熱降解行為,OMMT可以提升PP復合材料在高溫區(qū)域的熱穩(wěn)定性,同時提高PP體系的最終殘?zhí)苛。此?我們還成功制備了含不同量Na-MMT的HCFA/Na-MMT納米復合阻燃劑。將該納米復合阻燃劑與聚磷酸銨(APP)通過熔融共混的方法混入到聚丙烯(PP)中,制備阻燃PP納米復合材料。TGA結果表明剝離/插層的Na-MMT可以提高PP納米復合材料在高溫下的熱穩(wěn)定性,在促進保護性炭層的形成過程中發(fā)揮著重要的作用。此外,LOI,UL-94和Cone結果表明,當添加 20wt%的 IFR(APP:HCFA/Na-MMT 2%= 3:1),PP/APP/HCFA/Na-MMT納米復合材料的LOI值最高,可達到31.5%,垂直燃燒測試可通過V-0等級,此外,與不含Na-MMT的PP/APP/HCFA相比,它的熱釋放速率的峰值(PHRR)和總熱釋放量(THR)都有明顯的降低。PP/APP/HCFA/Na-MMT2%納米復合材料的碳渣呈現(xiàn)膨脹的蜂窩狀結構,可以有效的隔熱隔氧,阻止可燃性氣體的釋放。5.在第3章中,HCFA表現(xiàn)出突出的成炭能力和良好的熱穩(wěn)定性,尤其是PA-HCFA的1%重量損失(T1%)下的熱分解溫度為468℃,預測它可以適用于一些加工溫度更高的聚合物材料。因此,在本章節(jié)中,我們選用PA-HCFA和二乙基次磷酸鋁(AlPi)復配制備阻燃玻纖增強PBT復合材料。研究GFPBT/AlPi/PA-HCFA復合材料的熱穩(wěn)定性發(fā)現(xiàn),在600℃之前,炭渣具有極強的高溫抗氧化能力和高的熱穩(wěn)定性。此外,GFPBT/AlPi/PA-HCFA復合材料的阻燃性能明顯提高。燃燒實驗結果表明GFPBT/AlPi/PA-HCFA(AlPi/PA-HCFA = 3/1)體系獲得最高的LOI值,并能通過UL-94 V-0等級。阻燃性能的提高主要歸功于燃燒過程中GFPBT基體表面上的炭層能夠隔絕外界熱量和氧氣,起到保護內(nèi)層基體的作用。這和TGA的結果相一致。此外,與純的GFPBT相比,GFPBT/AlPi/PA-HCFA 復合材料(AlPi/PA-HCFA = 3/1)的 HRR 和 THR值明顯降低。SEM測試進一步驗證了該致密而緊湊的炭層存在可以減少燃燒期間可燃性氣體和熱量的傳遞,進而最終促使GFPBT/AlPi/PA-HCFA復合材料阻燃性能的提升。上述研究表明,PA-HCFA對聚合物基體在實際中的應用有很大的幫助。
[Abstract]:Nowadays, polymer materials are widely used in our daily life because of their excellent properties such as wear resistance, corrosion resistance, and electrical insulation. At the same time, they are well known for their flammability. The high flammability of polymer materials not only limits its further application and development, but also is extremely easy to fire and cause casualties and serious economic losses. Flame retardant technology and methods of common polymer materials (polypropylene and polybutylene terephthalate) are systematically reviewed in this paper. A series of phosphorus/nitrogen charring agents are prepared according to the molecular design, which have prominent char forming ability. These polymeric charring agents are used in flame retardant polypropylene materials. In addition, in order to solve the problem of poor water resistance of ammonium polyphosphate (APP), Microcapsulation Technology was introduced. Considering the advantages of nano-composite technology, a novel nano-composite flame retardant containing triazine polymerized charring agent (HCFAs) and stripped sodium-montmorillonite (Na-MMT) was prepared in one step. The thermal degradation and combustion characteristics of glass fiber reinforced polybutylene terephthalate (GFPBT) / HCFA / aluminum diethylene hypophosphite (AlPi) were studied. The main research progress of this paper includes the following parts. 1. A novel ring with high yield (86.5%) was synthesized by one-step method. Triphosphazene macromolecular charring agent (CPCFA) was introduced into polypropylene (PP) by melt blending with microcapsulated ammonium polyphosphate (MAPP) to prepare flame retardant PP. Compared with PP / MAPP, the LOI value of PP / MAPP / CPCFA system was obviously increased, and the vertical combustion (UL - 94) could reach V - 0 grade, and the corresponding thermal properties were also improved. The results show that the mixture of MAPP and CPCFA has a high flame retardant efficiency for PP. Thermogravimetric analysis shows that the presence of CPCFA can promote the formation of carbon layer and increase the residual carbon content of PP/MAPP/CPCFA in nitrogen and air. Finally, the water resistance test results show that the ratio of MAPP/CPCFA is 3:1 and 2:1. Polymer materials have excellent water resistance and can still reach UL-94 V-0 grade after 72 hours of hot water immersion. 2. In order to further improve the flame retardant efficiency and reduce its cost, a series of macromolecule charring agents based on triazine structure (HCFAs) were prepared and characterized by Fourier transform infrared spectroscopy (FTIR). Thermogravimetric analysis (TGA) and water solubility test were used to evaluate the thermal stability and water resistance of HCFAs. The corresponding experimental results show that HCFAs have excellent thermal stability, outstanding char-forming ability and excellent hydrophobicity, and can be used as an efficient charring agent. PA-HCFA containing triazine and piperazine rings exhibited the best thermal stability and char-forming ability among these macromolecular carbonizers. A new intumescent flame retardant (IFR) composed of HCFAs and ammonium polyphosphate (APP) was prepared for flame retardant PP composites. TGA, LOI and vertical combustion were used. The thermal degradation, combustion behavior and water resistance of PP/IFR system were evaluated by UL-94, Cone and water resistance tests. TGA results in nitrogen and air showed that HCFA/APP could increase the carbon residue and thermal stability of PP/IFR. LOI and Cone results showed that the addition of IFR (APP/HCFAs) significantly improved the thermal stability of PP/IFR system. The introduction of IFR (APP/HCFA) was found to be beneficial to the formation of an expansive and dense carbon layer on the surface of the material during combustion, thus effectively preventing further degradation and combustion of the internal substrate. As the most important component of intumescent flame retardant (IFR), acid-source ammonium polyphosphate (APP) was modified by cyanuric chloride and piperazine to improve its water resistance. The modified ammonium polyphosphate (CFA-APP) was obtained by FTIR, EA, X-ray photoelectron spectroscopy (XPS) and SEM. The flame retardant PP was prepared by melt blending of CFA-APP with carbon-collector, acid-source and gas-source. The flame retardant properties of PP, PP/APP and PP/CFA-APP were studied by LOI, UL-94 and cone calorimeter (CC). The LOI value of PP/CFA-APP system increased to 34.5% when the content of CFA-APP was 25%, and it could pass the V-0 test of vertical combustion. CC results showed that CFA-APP had better flame retardancy than APP in PP matrix, including lower PHR value, FGI and CO release. The thermal degradation behavior of PP composites was evaluated by thermogravimetric analysis. Compared with unmodified PP, the thermal stability of CFA-APP and PP composites could be improved effectively by using triazine macromolecule charring agent as shell layer. The shell layer promoted the decomposition of PP and CFA-APP in advance, resulting in better thermal stability at high temperature. The digital photographs and SEM diagrams show that the PP/CFA-APP composite has a more compact and stable carbon layer during combustion than PP/APP. It is concluded that chemical modification of APP is an effective method to improve the flame retardancy and water resistance of PP composites. 4. An organic modified montmorillonite (OMMT) was selected as a synergistic flame retardant to prepare PP/IFR/OMMT composites with ammonium polyphosphate (APP) and triazine macromolecule charring agent (PA-HCFA). The experimental results show that when the total content of IFR and OMMT is 20%, the flame retardancy of PP system is obviously improved. When the total amount of flame retardant is 20 wt%, the LOI value of PP system can be increased from 29% to 31.5% by adding 2 wt% OMMT. At the same time, the heat release rate (HRR), total heat release (THR) and the production of CO2 and CO were all reduced to some extent. The carbon layer of PP system was studied by SEM. It was found that the presence of OMMT could promote the formation of a dense and strong carbon layer on the surface of the polymer material during combustion, and at the same time insulate the heat and oxygen. TGA was used to investigate the thermal degradation behavior of PP and its synergistic flame retardant system. OMMT could improve the thermal stability of PP composites in high temperature region and the final carbon content of PP system. In addition, Na-MM with different content was successfully prepared. HCFA/Na-MMT nanocomposite flame retardant T. The nanocomposite flame retardant and ammonium polyphosphate (APP) were blended into polypropylene (PP) by melt blending to prepare flame retardant PP nanocomposites. In addition, LOI, UL-94 and One results show that when 20 wt% IFR is added (APP: HCFA / Na-MMT 2% = 3:1), the LOI value of PP / APP / HCFA / Na-MMT nanocomposites is the highest, reaching 31.5%. Vertical combustion test can pass V-0 grade. In addition, compared with PP / APP / HCFA without Na-MMT, the peak heat release rate of PP / APP / HCFA can reach 31.5%. The carbon slag of PP/APP/HCFA/Na-MMT2% nanocomposites exhibits an expanded honeycomb structure, which can effectively insulate heat and oxygen and prevent the release of combustible gases. 5. In Chapter 3, HCFA shows outstanding char-forming ability and good thermal stability, especially 1% weight loss of PA-HCFA (T1% weight loss). Thermal decomposition temperature at 468 C is predicted to be suitable for some polymer materials with higher processing temperature. Therefore, in this chapter, we choose PA-HCFA and AlPi to prepare flame retardant glass fiber reinforced PBT composites. In addition, the flame retardancy of GFPBT/AlPi/PA-HCFA composites was significantly improved. The combustion experiment results showed that the highest LOI value was obtained in the GFPBT/AlPi/PA-HCFA (AlPi/PA-HCFA=3/1) system and the flame retardancy was improved by UL-94 V-0 grade. In addition, the HRR and THR values of GFPBT/AlPi/PA-HCFA composites (AlPi/PA-HCFA=3/1) were significantly lower than those of pure GFPBT. SEM test further confirmed that the existence of the compact carbon layer could be reduced. The flame retardancy of GFPBT/AlPi/PA-HCFA composites was improved by the transfer of combustible gases and heat during low combustion. The above studies show that PA-HCFA is very helpful to the practical application of polymer matrix.
【學位授予單位】:中國科學技術大學
【學位級別】:博士
【學位授予年份】:2017
【分類號】:TQ314.248

【相似文獻】

相關期刊論文 前10條

1 尹亮;郝冬梅;林倬仕;陳濤;劉彥明;陳崇偉;徐靜安;;三嗪齊聚物成炭劑合成的研究[J];塑料助劑;2010年02期

2 羅國菁;楊永兵;張偉;李錦春;陳強;;含硅成炭劑的合成及其在阻燃PP中的應用研究[J];中國塑料;2011年12期

3 鄭劍波;游基飛;王彥林;;利用二甲基硅油副產(chǎn)物合成籠狀有機硅阻燃成炭劑的研究[J];化學世界;2014年02期

4 袁丹丹;殷海青;任顯誠;蔡緒福;;半芳香族聚酰胺成炭劑的合成與應用[J];四川大學學報(工程科學版);2012年01期

5 趙杰;秦軍;解田;謝普;;不同成炭劑對阻燃復合材料的性能影響研究[J];塑料工業(yè);2010年11期

6 王軍;魯成祥;任顯誠;蔡緒福;;聚對苯二甲酰乙二胺成炭劑的制備及其應用[J];四川大學學報(工程科學版);2010年02期

7 唐霜;尹昌宇;賴學軍;張海麗;李紅強;曾幸榮;;三嗪類大分子成炭劑的合成及其在聚丙烯中應用[J];現(xiàn)代塑料加工應用;2012年04期

8 費國霞;劉淵;王琪;;改性酚醛成炭劑的制備及其在氫氧化鎂/聚酰胺6阻燃體系中的協(xié)效阻燃作用[J];高分子學報;2011年10期

9 錢立軍;許夢蘭;馬洋;王靖宇;許國志;;聚磷酸銨和三嗪成炭劑復合聚丙烯在水煮條件下的阻燃和力學性能[J];塑料工業(yè);2014年02期

10 李旭;吳向陽;徐靜安;尹亮;林倬仕;陳濤;郝冬梅;;三嗪類成炭劑的合成及對聚丙烯的阻燃[J];現(xiàn)代塑料加工應用;2009年02期

相關會議論文 前7條

1 尹亮;林倬仕;郝冬梅;陳濤;劉彥明;陳崇偉;王履新;;新型成炭劑的合成及其阻燃性能研究[A];2011年中國阻燃學術年會會議論文集[C];2011年

2 柯晨皓;方科益;陶慷;李娟;嚴慶;王玉忠;;三嗪類超支化成炭劑的合成及成炭行為[A];2009年全國高分子學術論文報告會論文摘要集(下冊)[C];2009年

3 夏科丹;職慧珍;楊錦飛;;三嗪類成炭劑的合成及其應用[A];2012年中國阻燃學術年會論文集[C];2012年

4 許苗軍;李斌;;新型成炭劑對膨脹阻燃PP體系的阻燃及熱降解行為研究[A];2005年全國阻燃學術年會論文集[C];2005年

5 葉文;許肖麗;郝冬梅;尹亮;林倬仕;王履新;;新型三嗪類成炭劑的合成及其對PP的阻燃性能研究[A];2013年全國阻燃學術年會會議論文集[C];2013年

6 許家友;李愷丹;劉杰;;一種阻燃玻纖增強聚丙烯的成炭劑-芳香族聚酰胺[A];2013年全國高分子學術論文報告會論文摘要集——主題M:阻燃高分子[C];2013年

7 柯晨皓;李娟;許亮;陶慷;;三嗪超支化成炭劑的制備及其在尼龍6中的應用[A];2011年全國高分子學術論文報告會論文摘要集[C];2011年

相關博士學位論文 前1條

1 溫攀月;新型成炭劑的設計及其阻燃聚合物材料的熱穩(wěn)定性和燃燒性能的研究[D];中國科學技術大學;2017年

相關碩士學位論文 前10條

1 劉存帥;三嗪類大分子高效成炭劑在PP中的應用[D];山東大學;2015年

2 馬麗;含三嗪環(huán)和磷雜菲基團的新型成炭劑的合成及其在PP中的應用[D];太原理工大學;2016年

3 葛維娟;三嗪類超支化聚脲成炭劑的制備及在聚丙烯中的應用[D];太原理工大學;2016年

4 姜子維;聚磷酸銨包覆和高效成炭劑合成及其阻燃聚丙烯研究[D];華東理工大學;2016年

5 王遠月;馬來酸—賽克成炭劑的合成及其在聚丙烯阻燃中的應用研究[D];華東理工大學;2016年

6 劉梅芳;三聚氰胺磷酸鹽/復合成炭劑阻燃聚烯烴的研究[D];四川大學;2007年

7 尹昌宇;三嗪成炭劑的合成及其與聚磷酸銨協(xié)同阻燃聚丙烯的研究[D];華南理工大學;2012年

8 劉克升;新型三嗪成炭劑的合成及無鹵阻燃ABS的研究[D];東北林業(yè)大學;2008年

9 蔡翔;巰基三嗪成炭劑的合成及阻燃SBR的研究[D];華南理工大學;2012年

10 朱熒科;新型綠色成炭劑的制備以及成炭機理研究[D];寧波大學;2014年

,

本文編號:2210771

資料下載
論文發(fā)表

本文鏈接:http://www.lk138.cn/shoufeilunwen/gckjbs/2210771.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶c1a4b***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com