大視場(chǎng)高分辨率成像光學(xué)系統(tǒng)設(shè)計(jì)研究
[Abstract]:With the development of optoelectronic imaging technology, in order to obtain the target image information with larger spatial range and more spatial details, optoelectronic imaging system is gradually developing towards the direction of large field of view and high resolution. As a pair of contradictory parameters, it is impossible to improve both the field of view and the resolution of the optical system. Generally speaking, the resolution of the optical system with large field of view is often lower; the field of view of the optical system with high resolution is often smaller. Research hotspots in the field of science. Large-field high-resolution optical systems have wide application prospects in military and civil fields such as space remote sensing, aeronautical reconnaissance, security monitoring, astronomical observation and cultural relics protection. The optical system and the curved Petzval image plane optical system are studied in the following four aspects: 1) The design of off-axis three-mirror optical system is studied. Based on the reflection law and sinusoidal condition, a set of Wassermann-Wolf (W-W) differential equations for solving the initial structure of coaxial three-mirror are derived. An off-axis triaxial optical system with a focal length of 1.2m, a field of view of 18o?4o and an F/4 is designed by using an even aspheric surface. In addition, the main mirror of the system is quadric, the secondary mirror and the three mirrors are non-spherical, and the three mirrors are non-eccentric and inclined, which effectively reduces the manufacturing cost and the difficulty of assembly and adjustment. 2) The design of the off-axis four-mirror system is studied. The vector aberration theory and the node characteristics of each aberration are studied. An objective function consisting of weighted primary aberration coefficients and structural layout constraints is established. The objective function is solved by genetic algorithm and the structural parameters of the coaxial four-mirror optical system are solved. The coaxial four-mirror initial junction with good image quality and special configuration is obtained. An off-axis four-mirror optical system with a focal length of 1.2m, a field of view of 30o?4o and an F/4 is designed by using Zernike free-form surface. The structure of the system is compact and the modulation transfer function of each field of view is greater than 0.52.3 at 40 lp/mm. The design of a concentric multi-scale optical system is studied. Multiscale optical system can solve the contradiction between field of view and resolution, and is the best way to realize large field of view and high resolution imaging at the same time. The theory of concentric multiscale design is studied, the focal length formula of concentric spherical lens, achromatic condition and spherical aberration condition are deduced, and the image plane movement of concentric spherical lens is analyzed. Based on the concentric multi-scale design theory, a 1-billion-pixel concentric multi-scale optical system with a focal length of 35mm, a field of view of 120o? 60o and an F/2.8 pixel is designed. The modulation transfer function of each field of view is greater than 0.3 at 270lp/mm. The optical system consists of 104 microphases. Finally, the tolerance analysis of the concentric multi-scale optical system is carried out. 4) The optical system design of curved Petzval image plane is studied. In order to evaluate the distortion of the optical system more accurately, the concept of arc length distortion is proposed. A curved Petzval image plane optical system with focal length of 100 mm, field of view of 40 O and F/2.8 is designed. The modulation transfer function of each field of view is greater than 0.69 at 100 lp/mm, relative illumination 92.4% and arc length distortion 0.5%. Compared with the traditional optical system, the curved Petzval image plane optical system has compact structure and the number of components. The optical system of curved Petzval image plane provides a new development direction for large field of view and high resolution imaging.
【學(xué)位授予單位】:中國(guó)科學(xué)院長(zhǎng)春光學(xué)精密機(jī)械與物理研究所
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:TH74
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;光學(xué)系統(tǒng)設(shè)計(jì)(原書第4版)[J];應(yīng)用光學(xué);2009年06期
2 ;《光學(xué)系統(tǒng)設(shè)計(jì)》[J];紅外技術(shù);2009年11期
3 ;光學(xué)系統(tǒng)設(shè)計(jì)[J];光學(xué)機(jī)械;1977年06期
4 姜會(huì)林;;用“信價(jià)比”評(píng)價(jià)光學(xué)系統(tǒng)設(shè)計(jì)的經(jīng)濟(jì)效益[J];長(zhǎng)春光學(xué)精密機(jī)械學(xué)院學(xué)報(bào);1985年04期
5 ;歡迎參加“現(xiàn)代光學(xué)系統(tǒng)設(shè)計(jì)和象質(zhì)評(píng)價(jià)”學(xué)術(shù)交流會(huì)議[J];光學(xué)儀器;1997年02期
6 劉娜,景超,張紅霞,張以謨,井文才,周革;微形貌光電觀測(cè)鏡的光學(xué)系統(tǒng)設(shè)計(jì)[J];光電工程;2005年01期
7 江恒;楊坤濤;;激光光學(xué)系統(tǒng)設(shè)計(jì)中球差對(duì)像方束腰的影響[J];激光與紅外;2006年02期
8 劉寶元;劉鈞;路紹軍;;學(xué)生“現(xiàn)代光學(xué)系統(tǒng)設(shè)計(jì)”計(jì)算能力培養(yǎng)的探索與實(shí)踐[J];中國(guó)西部科技;2008年27期
9 ;“2010光學(xué)英才論壇——先進(jìn)光學(xué)系統(tǒng)設(shè)計(jì)、加工及檢測(cè)技術(shù)”成功召開(kāi)[J];紅外與激光工程;2010年04期
10 李曉艷;王樂(lè);石巖;;注重素質(zhì)和實(shí)踐能力的現(xiàn)代光學(xué)系統(tǒng)設(shè)計(jì)課程教學(xué)方法研究[J];科技信息;2011年02期
相關(guān)會(huì)議論文 前10條
1 馬蘭;唐勇;;大倍率大口徑觀光望遠(yuǎn)鏡的光學(xué)系統(tǒng)設(shè)計(jì)[A];2008中國(guó)儀器儀表與測(cè)控技術(shù)進(jìn)展大會(huì)論文集(Ⅲ)[C];2008年
2 丁全心;熊鐘秀;;應(yīng)用于高速飛行器的共形光學(xué)系統(tǒng)設(shè)計(jì)研究[A];第九屆全國(guó)光電技術(shù)學(xué)術(shù)交流會(huì)論文集(下冊(cè))[C];2010年
3 王永綱;;靜電電子(離子)光學(xué)系統(tǒng)設(shè)計(jì)[A];第7屆全國(guó)核電子學(xué)與核探測(cè)技術(shù)學(xué)術(shù)年會(huì)論文集(二)[C];1994年
4 呂德勝;屈求智;汪斌;趙劍波;李唐;周子超;史春艷;魏榮;劉亮;王育竹;;空間冷原子鐘光學(xué)系統(tǒng)設(shè)計(jì)[A];2009全國(guó)時(shí)間頻率學(xué)術(shù)會(huì)議論文集[C];2009年
5 樊學(xué)武;;基于變形鏡的詳普查一體化空間光學(xué)系統(tǒng)設(shè)計(jì)[A];第十屆全國(guó)光電技術(shù)學(xué)術(shù)交流會(huì)論文集[C];2012年
6 王汝琳;王霞;;新型礦用紅外瓦斯傳感器的光學(xué)系統(tǒng)設(shè)計(jì)[A];第十屆全國(guó)煤礦自動(dòng)化學(xué)術(shù)年會(huì)論文集[C];2000年
7 劉根榮;崔向群;;Shack-Hartmann波前檢測(cè)儀的光學(xué)系統(tǒng)設(shè)計(jì)與應(yīng)用[A];江蘇、山東、河南、江西、黑龍江五省光學(xué)(激光)聯(lián)合學(xué)術(shù)'05年會(huì)論文集[C];2005年
8 湯天瑾;李妥妥;;一種超大相對(duì)孔徑1:0.6鏡頭的光學(xué)系統(tǒng)設(shè)計(jì)[A];中國(guó)光學(xué)學(xué)會(huì)2011年學(xué)術(shù)大會(huì)摘要集[C];2011年
9 姚罡;傅丹膺;黃穎;;集成式雙線陣立體測(cè)繪相機(jī)光學(xué)系統(tǒng)設(shè)計(jì)[A];中國(guó)光學(xué)學(xué)會(huì)2010年光學(xué)大會(huì)論文集[C];2010年
10 江恒;曾文鋒;劉軍;王在淵;;激光光學(xué)系統(tǒng)中球差的研究[A];2009年先進(jìn)光學(xué)技術(shù)及其應(yīng)用研討會(huì)論文集(下冊(cè))[C];2009年
相關(guān)博士學(xué)位論文 前4條
1 徐奉剛;大視場(chǎng)高分辨率成像光學(xué)系統(tǒng)設(shè)計(jì)研究[D];中國(guó)科學(xué)院長(zhǎng)春光學(xué)精密機(jī)械與物理研究所;2017年
2 方煜;成像光譜儀光學(xué)系統(tǒng)設(shè)計(jì)與像質(zhì)評(píng)價(jià)研究[D];中國(guó)科學(xué)院研究生院(西安光學(xué)精密機(jī)械研究所);2013年
3 寇婕婷;衍射光柵效率自動(dòng)測(cè)試儀光學(xué)系統(tǒng)設(shè)計(jì)與測(cè)量誤差修正方法研究[D];中國(guó)科學(xué)院研究生院(長(zhǎng)春光學(xué)精密機(jī)械與物理研究所);2012年
4 邵磊;激光多普勒效應(yīng)遠(yuǎn)距離測(cè)量爆炸過(guò)程動(dòng)態(tài)參數(shù)的研究[D];天津大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 韓少博;紅外搜跟場(chǎng)景投射器投影子系統(tǒng)光學(xué)系統(tǒng)設(shè)計(jì)[D];西安工業(yè)大學(xué);2015年
2 黃幼萍;數(shù)碼裂隙燈顯微成像光學(xué)系統(tǒng)設(shè)計(jì)[D];福建師范大學(xué);2015年
3 范灃曦;實(shí)現(xiàn)LED二次配光的自由曲面光學(xué)系統(tǒng)設(shè)計(jì)[D];浙江大學(xué);2015年
4 肖宇剛;激光測(cè)距瞄準(zhǔn)鏡光學(xué)系統(tǒng)設(shè)計(jì)研究[D];南京理工大學(xué);2014年
5 陳沖;醫(yī)用硬性內(nèi)窺鏡光學(xué)系統(tǒng)設(shè)計(jì)[D];長(zhǎng)春理工大學(xué);2010年
6 朱立榮;超大口徑四反射鏡光學(xué)系統(tǒng)設(shè)計(jì)[D];蘇州大學(xué);2007年
7 晏蕾;可見(jiàn)/紅外雙波段航空光電偵察平臺(tái)光學(xué)系統(tǒng)設(shè)計(jì)[D];中國(guó)科學(xué)院研究生院(長(zhǎng)春光學(xué)精密機(jī)械與物理研究所);2010年
8 趙劍;用于激光目標(biāo)識(shí)別測(cè)量的光學(xué)系統(tǒng)設(shè)計(jì)[D];西安電子科技大學(xué);2012年
9 盧鳳凰;激光三角測(cè)量光學(xué)系統(tǒng)設(shè)計(jì)及性能分析[D];西南交通大學(xué);2011年
10 崔勝利;紅外成像光學(xué)系統(tǒng)設(shè)計(jì)[D];重慶大學(xué);2008年
,本文編號(hào):2197466
本文鏈接:http://www.lk138.cn/shoufeilunwen/gckjbs/2197466.html