中国韩国日本在线观看免费,A级尤物一区,日韩精品一二三区无码,欧美日韩少妇色

當(dāng)前位置:主頁 > 碩博論文 > 工程博士論文 >

含硼高能化合物的結(jié)構(gòu)與性能理論研究

發(fā)布時(shí)間:2018-08-15 12:10
【摘要】:高能鈍感是含能材料的發(fā)展方向,也是武器能源領(lǐng)域關(guān)注的熱點(diǎn)問題。長期以來,人們改進(jìn)含能材料的技術(shù)途徑有兩大類:一是尋找和合成新的化合物;二是在配方中加入相容性好的高能組分來提高含能材料的能量,同時(shí),通過添加粘結(jié)劑、鈍感劑來獲得感度相對較低的混合藥劑配方。無論采取何種途徑獲得新型高能化合物,其設(shè)計(jì)和合成都是根本所在,相關(guān)研究具有重要的理論意義和應(yīng)用價(jià)值。硼由于具有高的燃燒熱值,受到了人們的關(guān)注,但硼的反應(yīng)需要外界供氧,而且此種材料的表面氧化膜在燃爆過程中有較強(qiáng)的阻礙作用,影響了其能量的釋放;诖藛栴},本文以設(shè)計(jì)兼具高熱值、反應(yīng)迅速、安全性好的含硼高能化合物為目標(biāo),利用密度泛函理論對硝基硼烷化合物的幾何結(jié)構(gòu)、成鍵特征、熱力學(xué)穩(wěn)定性以及光譜性質(zhì)等進(jìn)行理論研究。從理論上設(shè)計(jì)探索新型高能、鈍感化合物,為新型高能鈍感含能材料的研究提供理論支撐。論文主要研究內(nèi)容如下:1在密度泛函理論在B3LYP/6-31+G~*水平上,對硼氧基取代TNT苯環(huán)上氫原子所得化合物進(jìn)行幾何結(jié)構(gòu)、熱力學(xué)性質(zhì)以及其前線軌道能級差ΔE_(gap)和Wiberg鍵級進(jìn)行了理論研究;2在密度泛函理論在B3LYP/6-31+G~*水平上,對TNA的硼氧基取代衍生物的幾何結(jié)構(gòu)、熱力學(xué)性質(zhì)以及其前線軌道能級差ΔE_(gap)和Wiberg鍵級進(jìn)行了理論研究;3采用密度泛函理論在B3LYP/6-31+G~*水平上,對TNP硼氧基取代物的鍵長,紅外光譜振動(dòng),熱力學(xué)性質(zhì)以及前線軌道能級差ΔE_(gap)和wiberg鍵級進(jìn)行理論研究;4采用密度泛函理論在B3LYP/6-31+G~*水平上,用原子化反應(yīng)法對硼氫化合物B_2H_6硝基衍生物的穩(wěn)定性、生成焓和爆熱等參數(shù)進(jìn)行了理論計(jì)算;5采用密度泛函理論在B3LYP/6-31+G~*水平上,對硼氫化合物B_4H_2硝基衍生物的穩(wěn)定性、生成焓和爆熱等參數(shù)進(jìn)行了理論計(jì)算;6采用密度泛函理論在B3LYP/6-31+G~*水平上,對硼氫化合物B_5H_9硝基衍生物的穩(wěn)定性、生成焓和爆熱等參數(shù)進(jìn)行了理論計(jì)算。理論計(jì)算結(jié)果表明:1 TNT硼氧基衍生物中硼氧鍵為三鍵,C-BO鍵的鍵級為0.86,C-NO_2鍵的鍵級為0.90,C-BO鍵的鍵級相對最弱,可能是標(biāo)題物的熱解或起爆引發(fā)鍵;通過自然軌道分析得出TNT-(BO)_2前線軌道能級差值ΔE_(gap)大于TNT-BO,這表明TNT硼氧基衍生物穩(wěn)定性隨取代基數(shù)的增加而增強(qiáng);通過爆熱計(jì)算得知TNT硼氧基衍生物的爆熱明顯大于TNT,由此可推斷,TNT硼氧基衍生物是一種潛在的高爆熱鈍感含能材料;2 TNA硼氧衍生物中硼氧鍵是典型三鍵;通過自然軌道分析在TNA硼氧衍生物中N-H鍵最弱,可能是標(biāo)題物的熱解或起爆引發(fā)鍵;并且隨著取代基數(shù)目的增加,前線軌道能級差ΔE_(gap)增大,表明化合物穩(wěn)定性增強(qiáng);通過爆熱計(jì)算得知TNA硼氧基衍生物的爆熱大于TNA,由此可推斷,TNA硼氧基衍生物是一種潛在的高爆熱鈍感含能材料;3 TNP硼氧衍生物中硼氧鍵是典型三鍵;通過自然軌道分析可知,隨著取代基數(shù)目的增加,TNP硼氧衍生物的前線軌道能級差ΔE_(gap)增大,表明化合物的穩(wěn)定性隨取代基數(shù)目的增加而增大;TNP硼氧基衍生物的爆熱比TNP爆熱大,而且計(jì)算表明硼氧基取代苯環(huán)上氫原子后會使得化合物更加穩(wěn)定,由此可推斷,TNP硼氧基衍生物是一種潛在的高爆熱鈍感含能材料;4采用密度泛函理論研究結(jié)果表明,B_2H_6硝基衍生物的爆壓、爆速隨著硝基數(shù)的增加也在增加;自然軌道分析得知B2H2(NO_2)4化合物的ΔE_(gap)值為459.27 k J/mol,接近于TNT、TNA和TNP的硼氧基衍生物的ΔE_(gap)值,說明在B_2H_6中即使硝基數(shù)增加到4個(gè)時(shí),所得到的硝基硼烷也是相當(dāng)穩(wěn)定的,可以作為潛在的新型高能鈍感含能材料使用;5采用密度泛函理論對B_4H_2硝基衍生物和TNT進(jìn)行了研究比較,研究結(jié)果表明,標(biāo)題物的理論密度、爆速和爆壓略低,但是爆熱比TNT大很多;自然軌道分析得知B4HNO_2和B4(NO_2)_2沒有B_4H_2穩(wěn)定,即B4HNO_2和B4(NO_2)_2的感度較大,在使用前可能需要經(jīng)過降感處理;6通過自然軌道分析了B_5H_9硝基衍生物的ΔE_(gap)值,發(fā)現(xiàn)其與TNT軌道能級差ΔE_(gap)值相近,可以認(rèn)為這些化合物穩(wěn)定性與TNT穩(wěn)定性相近;化合物中B-NO_2鍵相對較弱,可能是標(biāo)題物的熱解或起爆引發(fā)鍵;化合物中隨著硝基數(shù)的增加,化合物的爆速和爆壓都在增大,最大爆速為6.98 km/s,最大爆壓為19.87 Gpa,雖然比TNT低,但是最大爆熱為1946.52 J/g,遠(yuǎn)大于TNT的爆熱(1425.94 J/g)。
[Abstract]:High-energy insensitivity is the development direction of energetic materials and a hot issue in the field of weapon energy. For a long time, there are two ways to improve energetic materials: one is to find and synthesize new compounds; the other is to add compatible high-energy components into the formula to improve the energy of energetic materials, and at the same time, to add bonding. Designing and synthesizing new high-energy compounds by any means is fundamental. Relevant research has important theoretical significance and application value. Boron has attracted people's attention because of its high combustion calorific value, but the reaction of boron requires external oxygen supply. Based on this problem, in order to design boron-containing high-energy compounds with high calorific value, rapid reaction and good safety, the geometric structure, bonding characteristics and thermodynamics of nitroborane compounds were studied by density functional theory. Theoretical studies on stability and spectral properties have been carried out. New energetic and insensitive compounds have been designed and explored theoretically to provide theoretical support for the study of new energetic and insensitive energetic materials. The geometric structure, thermodynamic properties and frontier orbital energy difference E_ (gap) and Wiberg bond level of TNA were studied theoretically. 3 The bond length, infrared spectroscopy, thermodynamic properties and frontier orbital energy difference E_ (gap) and Wiberg bond level of TNP boroxy substitutes were studied theoretically at B3LYP/6-31+G~* level by density functional theory. 4 The derivatization of borohydride B_2H_6 by atomization reaction at B3LYP/6-31+G~* level was studied by density functional theory. The stability, enthalpy of formation and detonation heat of borohydride B_4H_2 nitro-derivatives were calculated theoretically at B3LYP/6-31+G~* level by using density functional theory. The stability, enthalpy of formation and detonation heat of borohydride B_4H_2 nitro-derivatives were calculated theoretically. The density functional theory was used to calculate the B_5H_9 nitro-compounds at B3LYP/6-31+G~* level. The stability, enthalpy of formation and heat of detonation of the derivatives were calculated theoretically. The results show that: 1. The boron-oxygen bond of TNT boron-oxygen derivatives is triple bond, the bond order of C-BO bond is 0.86, the bond order of C-NO_2 bond is 0.90, and the bond order of C-BO is relatively weak, which may be the title compound's pyrolysis or initiation bond. TNT - (BO) _2 frontline orbital energy level difference_E_ (gap) is greater than TNT-BO, which indicates that the stability of TNT boroxy derivatives increases with the number of substituents; the detonation heat of TNT boroxy derivatives is obviously higher than that of TNT by thermal calculation, which can be inferred that TNT boroxy derivatives are potential energetic materials with high thermal insensitivity; Boron-oxygen bond in TNA boron-oxygen derivatives is a typical triple bond; the N-H bond is the weakest in TNA boron-oxygen derivatives by natural orbital analysis, which may be the pyrolysis or initiation bond of the title compounds; and with the number of substituents increasing, the frontier orbital energy gap E_ (gap) increases, indicating that the stability of the compounds is enhanced; the detonation heat of TNA boron-oxygen derivatives is calculated by detonation heat calculation. When the number of substituents increased, the frontier orbital energy difference_E_ (gap) of TNP boron-oxygen derivatives increased, indicating that the stability of TNP boron-oxygen derivatives increased with substitution. The detonation heat of TNP boroxy derivatives is larger than that of TNP, and calculation shows that substituting hydrogen atoms on benzene ring with boroxy groups makes the compounds more stable. It can be inferred that TNP boroxy derivatives are potential energetic materials with high detonation heat insensitivity. The detonation pressure and the detonation velocity of the derivatives also increase with the increase of the number of nitro groups; the natural orbital analysis shows that the E_ (gap) value of B2H2 (NO_2)4 compound is 459.27 K J/mol, which is close to the E_ (gap) value of boroxy derivatives of TNT, TNA and TNP, indicating that the nitroborane obtained in B_2H_6 is quite stable even if the number of nitro groups increases to 4. The results show that the theoretical density, detonation velocity and pressure of the title compound are slightly lower, but the detonation heat is much larger than that of TNT. The natural orbital analysis shows that B4HNO_2 and B4 (NO_2)_2 are not stable, that is, B4HNO_2 is not stable. The sensitivity of B4(NO_2)_2 is higher than that of B4(NO_2)_2, which may need to be reduced before use. 6 The E_ (gap) value of B_5H_9 nitro derivatives is analyzed by natural orbital method, and it is found that the stability of these compounds is close to that of TNT, and the B-NO_2 bond is relatively weak, which may be the title compound. The detonation velocity and pressure of the compounds increase with the increase of nitro number, the maximum detonation velocity is 6.98 km/s, the maximum detonation pressure is 19.87 Gpa, although lower than TNT, the maximum detonation heat is 1946.52 J/g, which is much higher than that of TNT (1425.94 J/g).
【學(xué)位授予單位】:中北大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:TQ560.1

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 ;《含能材料》征稿啟事[J];含能材料;2007年01期

2 ;《含能材料》征稿啟事[J];含能材料;2007年02期

3 ;《含能材料》征稿啟事[J];含能材料;2007年05期

4 ;《含能材料》征稿啟事[J];含能材料;2008年02期

5 ;《含能材料》編輯部開通遠(yuǎn)程稿件處理系統(tǒng)[J];含能材料;2009年01期

6 ;《含能材料》編輯部開通遠(yuǎn)程稿件處理系統(tǒng)[J];含能材料;2009年03期

7 ;《含能材料》編輯部開通遠(yuǎn)程稿件處理系統(tǒng)[J];含能材料;2009年04期

8 ;《含能材料》編輯部開通遠(yuǎn)程稿件處理系統(tǒng)[J];含能材料;2009年05期

9 ;歡迎訂閱《含能材料》[J];含能材料;2009年05期

10 ;歡迎訂閱含能材料[J];含能材料;2010年01期

相關(guān)會議論文 前10條

1 舒遠(yuǎn)杰;;含能材料的理論研究與數(shù)值模擬進(jìn)展[A];中國工程物理研究院科技年報(bào)(2009年版)[C];2010年

2 王曉川;;聚合物與含能材料相容性[A];2006年全國高分子材料科學(xué)與工程研討會論文集[C];2006年

3 葛忠學(xué);王伯周;吳浩;李華;;含能材料分子設(shè)計(jì)與性能預(yù)估研究[A];第九屆全國計(jì)算(機(jī))化學(xué)學(xué)術(shù)會議論文摘要集[C];2007年

4 劉艷;劉子如;;粒度對含能材料粉體熱分解中局部化學(xué)現(xiàn)象的影響[A];第八屆全國顆粒制備與處理學(xué)術(shù)和應(yīng)用研討會論文集[C];2007年

5 馮梅;;含能材料生產(chǎn)線安全控制技術(shù)[A];全國危險(xiǎn)物質(zhì)與安全應(yīng)急技術(shù)研討會論文集(下)[C];2011年

6 王新征;張松林;張慶明;陳e,

本文編號:2184164


資料下載
論文發(fā)表

本文鏈接:http://www.lk138.cn/shoufeilunwen/gckjbs/2184164.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶7e45c***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請E-mail郵箱bigeng88@qq.com