中国韩国日本在线观看免费,A级尤物一区,日韩精品一二三区无码,欧美日韩少妇色

當前位置:主頁 > 碩博論文 > 工程博士論文 >

超低溫奧氏體球墨鑄鐵微觀組織與低溫沖擊斷裂行為的研究

發(fā)布時間:2018-08-13 14:37
【摘要】:近年來,在極低溫條件下使用的工業(yè)裝備越來越多,例如大型超低溫BOG壓縮機的工作溫度一般在-160℃甚至更低,因而對超低溫鑄造材料有著較大的需求。通常情況下,以鐵素體為基體的球墨鑄鐵材料能夠承受的溫度最低在-60℃左右,無法滿足更低溫度的應用需求。高鎳奧氏體球墨鑄鐵隨著溫度的降低沒有韌-脆轉變現象,擁有著良好的低溫力學性能,因而在超低溫(-100℃以下)工業(yè)制造領域有著廣泛的應用前景。目前,針對高鎳奧氏體球墨鑄鐵的相關研究主要集中在高溫性能方面,對于超低溫奧氏體球墨鑄鐵的研究極少,對其微觀組織、沖擊斷裂特征、示波沖擊斷裂過程以及沖擊裂紋的萌生和亞穩(wěn)擴展規(guī)律并未見報道,因此本課題開展了超低溫奧氏體球墨鑄鐵微觀組織與低溫沖擊斷裂行為的研究。對超低溫奧氏體球墨鑄鐵微觀組織及其對摩擦磨損行為的研究表明:超低溫奧氏體球墨鑄鐵的微觀組織主要由奧氏體、石墨球以及分布在晶界處的碳化物構成,材料中的錳元素和鉻元素會偏析分布至材料基體中的奧氏體晶界處形成M23C6(M=Fe、Mn、Cr)型碳化物,其微觀硬度可達到1200HV以上,遠高于奧氏體基體硬度值,因而使得材料的宏觀硬度得以提升。鉻元素有著比錳元素更強的碳化物形成能力,對材料的摩擦磨損性能影響更大。通過對不同鉻元素含量下的材料摩擦磨損后的形貌進行分析發(fā)現,該材料表現為磨粒磨損機制,其中鉻元素促進形成的晶界碳化物作為硬質顆粒使得材料的摩擦磨損性能顯著提高。采用低溫示波沖擊手段,針對不同合金(鎳、錳和鉻)元素下的超低溫奧氏體球墨鑄鐵低溫沖擊性能進行研究,結果表明:隨著溫度的降低,不同合金元素下的超低溫奧氏體球墨鑄鐵沖擊性能均存在著相似的特征,即呈現先上升后下降的變化趨勢,且鎳元素含量的變化對低溫沖擊性能存在著正相關的影響,而過多的錳元素和鉻元素加入會導致低溫沖擊性能惡化。采用掃描電子顯微鏡對沖擊斷口形貌進行分析發(fā)現:材料在室溫至-193℃的溫度區(qū)間內均呈現了以石墨球或石墨球凹坑作為韌窩中心的韌性斷裂形貌特征,并且其沖擊斷口中石墨球數量與沖擊性能有著直接的因果關系,即石墨球越多則沖擊性能越好;碳化物數量的改變在室溫下對材料的沖擊性能影響并不明顯,而隨著溫度的降低其影響呈現增大的趨勢,在-193℃的超低溫條件下會導致沖擊斷口中出現縱向微裂紋,嚴重破壞材料沖擊性能。在對超低溫奧氏體球墨鑄鐵低溫沖擊性能規(guī)律的研究基礎上,對不同溫度下的示波沖擊曲線進行了深入分析,進一步地揭示了材料的沖擊斷裂過程,結果表明:以斜率法與柔度變化率法相結合的方式對示波沖擊曲線進行分段分析的方法,可以有效的定量表述材料的低溫沖擊斷裂過程;其中,沖擊裂紋的高載荷亞穩(wěn)擴展能量的比重可以達到沖擊總能量的60%以上,且兩者的變化趨勢相一致,即隨溫度的降低呈現先上升后下降的趨勢,因而高載荷亞穩(wěn)擴展能量是決定低溫沖擊性能的主要因素;而該材料的低溫沖擊性能之所以呈現先上升后下降的趨勢(在-80℃時為極大值),是因為在室溫至-80℃時,高載荷亞穩(wěn)擴展段的平均載荷對低溫沖擊性能起到了主導作用,而當溫度繼續(xù)降低時,高載荷亞穩(wěn)擴展段的位移則成為了主導因素,研究還發(fā)現,即便鎳元素含量變化這一規(guī)律仍然存在。同時,采用三維激光共聚焦顯微鏡對沖擊斷口的幾何形貌進行定量分析,對不同溫度下高載荷亞穩(wěn)擴展段的表面粗糙度指數進行統計,驗證了上述分析結論的正確性。由于超低溫奧氏體球墨鑄鐵實際示波沖擊曲線中高載荷亞穩(wěn)擴展段的能量正好對應著沖擊裂紋萌生與亞穩(wěn)擴展過程中所吸收的能量,因此進一步研究了沖擊裂紋萌生與亞穩(wěn)擴展過程,結果表明:隨著溫度的降低,超低溫奧氏體球墨鑄鐵有著更好的抵抗沖擊裂紋萌生的能力;而前期抵抗沖擊裂紋亞穩(wěn)擴展的能力受到溫度的影響,后期則受到溫度和材料中鎳元素含量變化的共同影響;材料基體中的石墨球(特別是相鄰的石墨球)和位于晶界處的碳化物是影響沖擊裂紋亞穩(wěn)擴展路徑的最主要因素,而溫度的降低和材料中碳化物數量的增加都會加劇材料的脆性斷裂傾向;同時,采用Schindler方法對不同鎳元素含量的超低溫奧氏體球墨鑄鐵在動態(tài)載荷下的延性斷裂韌度JBl0.2進行了計算后發(fā)現,隨著溫度的降低,材料在動態(tài)載荷下的延性斷裂韌度呈現持續(xù)升高的趨勢,而當溫度達到-80℃以下時,這一趨勢會發(fā)生明顯的放緩。
[Abstract]:In recent years, more and more industrial equipments have been used under extremely low temperature conditions. For example, the working temperature of large-scale ultra-low temperature BOG compressor is generally - 160 C or even lower, so there is a great demand for ultra-low temperature casting materials. The high-nickel Austenitic Ductile iron has good mechanical properties at low temperature, so it has a broad application prospect in the field of ultra-low temperature (-100) industrial manufacturing. At present, the research on high-nickel Austenitic Ductile iron is mainly focused on. In the aspect of high temperature properties, there is little research on the microstructure, impact fracture characteristics, oscillographic impact fracture process and the law of initiation and metastable propagation of impact cracks of ultra-low temperature Austenitic Ductile iron. The microstructure and friction and wear behavior of ultra-low temperature Austenitic Ductile iron are studied. The results show that the microstructure of ultra-low temperature Austenitic Ductile iron is mainly composed of austenite, graphite nodules and carbides distributed at grain boundaries. Manganese and chromium elements in the material will segregate and distribute to austenite grain boundaries to form M. The micro-hardness of 23C6 (M=Fe, Mn, Cr) carbide can reach 1200HV, which is much higher than that of austenite matrix, so the macro-hardness of the material can be improved. The carbide forming ability of chromium element is stronger than that of manganese element, which has greater influence on the friction and wear properties of the material. The wear morphology analysis showed that the material exhibited abrasive wear mechanism, in which the grain boundary carbide promoted by chromium element was used as hard particles to improve the friction and wear properties of the material. The results show that the impact properties of ultra-low temperature Austenitic Ductile Iron with different alloying elements have similar characteristics as the temperature decreases, that is, the impact properties of ultra-low temperature Austenitic Ductile Iron increase first and then decrease, and the change of nickel content has a positive correlation with the impact properties at low temperature, while excessive manganese and chromium elements have a positive correlation. Scanning electron microscopy (SEM) was used to analyze the impact fracture morphology. It was found that the ductile fracture morphology with graphite sphere or graphite sphere pit as the dimple center was observed in the temperature range from room temperature to - 193 C. The number of graphite spheres and impact properties of the impact fracture surface were also observed. There is a direct causal relationship, that is, the more graphite spheres, the better the impact performance; the change of carbide number at room temperature has no obvious impact on the impact performance of the material, but with the decrease of temperature its impact shows an increasing trend, in the ultra-low temperature of - 193 C conditions will lead to the occurrence of longitudinal microcracks in the impact fracture, seriously destroying the impact of materials. On the basis of the study on the low temperature impact property of ultra-low temperature Austenitic Ductile iron, the oscillographic impact curves at different temperatures are analyzed in depth, and the impact fracture process of the material is further revealed. The results show that the oscillographic impact curves are segmented by slope method and flexibility change rate method. The analytical method can be used to quantitatively describe the low temperature impact fracture process of materials, in which the proportion of metastable propagation energy under high load can reach more than 60% of the total impact energy, and the change trend of the two is consistent, that is, the metastable propagation energy under high load increases first and then decreases with the decrease of temperature. The main factor determining the low temperature impact property is that the low temperature impact property of the material first increases and then decreases (the maximum value is at - 80 C), because the average load of the high load metastable extension plays a leading role in the low temperature impact property from room temperature to - 80 C, and the high load metastable property when the temperature continues to decrease. At the same time, the geometric morphology of impact fracture was quantitatively analyzed by using three-dimensional laser confocal microscopy, and the surface roughness index of metastable extended section with high load at different temperatures was calculated to verify the above results. The results show that the energy absorbed in the metastable growth stage of high load in the oscillographic shock curve of ultra-low temperature Austenitic Ductile Iron corresponds to the energy absorbed in the process of crack initiation and metastable growth. Therefore, the process of impact crack initiation and metastable growth is further studied. The results show that with the decrease of temperature, the energy absorbed in the metastable growth stage corresponds to the energy absorbed in the process of impact crack initiation and meta Low-temperature Austenitic Ductile iron has better resistance to impact crack initiation; the resistance to metastable propagation of impact crack in early stage is affected by temperature, while in later stage is affected by both temperature and nickel content in the material; graphite spheres in the matrix (especially adjacent graphite spheres) and carbonization at grain boundary Material is the most important factor affecting the metastable propagation path of impact crack, and the brittle fracture tendency is aggravated by the decrease of temperature and the increase of carbide content in the material. It is found that the ductile fracture toughness of the material increases continuously with the decrease of temperature under dynamic loading, and the trend slows down obviously when the temperature is below - 80%.
【學位授予單位】:沈陽工業(yè)大學
【學位級別】:博士
【學位授予年份】:2017
【分類號】:TG143.5

【相似文獻】

相關期刊論文 前10條

1 尹朝曦;;如何選用奧氏體鋼爐管[J];石油化工設備技術;1991年02期

2 長征;適合作人體植入物用的無鎳奧氏體鋼[J];金屬功能材料;2001年06期

3 長征;適合作人體植入物用的無鎳奧氏體鋼[J];金屬功能材料;2002年01期

4 戴起勛,程曉農,趙玉濤,袁志鐘;工程應用層次的奧氏體鋼計算設計系統[J];江蘇大學學報(自然科學版);2003年01期

5 王建泳;;奧氏體鋼應變誘發(fā)馬氏體的試驗研究[J];鍋爐技術;2013年03期

6 薛侃時;;高強度超低溫奧氏體鋼的發(fā)展[J];上海金屬(鋼鐵分冊);1988年04期

7 G.G.Bondarenko;I.N.Borodulin;曹冬根;;改善奧氏體鋼耐熱性的化學處理方法[J];國外金屬熱處理;1988年02期

8 戴起勛,火樹鵬,陳原野;奧氏體鋼的形變誘發(fā)組織特征[J];江蘇工學院學報;1993年04期

9 李曉剛;陳華;姚治銘;李勁;柯偉;;304奧氏體鋼的高溫高壓氫腐蝕[J];金屬學報;1993年04期

10 В.Г.ΓОРБАЧ;謝揆燮;;制造儀表裝備和零件用馬氏體-奧氏體鋼[J];鑄鍛熱;1993年03期

相關會議論文 前5條

1 馬玉喜;榮凡;周榮;朗宇平;蔣業(yè)華;;高氮奧氏體鋼的韌脆轉變研究[A];2007中國鋼鐵年會論文集[C];2007年

2 范榮團;黃勝;郭桂英;;高錳奧氏體鋼中錳在晶界和晶內的非平衡偏析[A];海峽兩岸電子顯微學研討會論文專集[C];1992年

3 劉國剛;;奧氏體爐管的壽命評價新技術及其應用[A];全國火電大機組(300MW級)競賽第34屆年會論文集[C];2005年

4 任大鵬;王小英;陳世勛;姜桂芬;;21-6-9奧氏體鋼與氘、氚氣體長期作用后顯微組織[A];中國工程物理研究院科技年報(2000)[C];2000年

5 馬玉喜;;高氮奧氏體鋼的韌脆轉變與層錯能之間的關系研究[A];2009年全國熱軋板帶生產技術交流會論文集[C];2009年

相關重要報紙文章 前1條

1 Motomichi KOYAMA Takahiro SAWAGUCHI 張濤 譯;日本研究奧氏體鋼的TWIP效應[N];中國冶金報;2013年

相關博士學位論文 前7條

1 張榮華;護環(huán)用改進型超高氮奧氏體鋼的鑄態(tài)組織及熱變形行為[D];燕山大學;2015年

2 王曼;新型奧氏體鋼顯微組織結構穩(wěn)定性及力學性能的研究[D];北京科技大學;2017年

3 姜珂;超低溫奧氏體球墨鑄鐵微觀組織與低溫沖擊斷裂行為的研究[D];沈陽工業(yè)大學;2017年

4 付瑞東;高錳奧氏體鋼低溫沿晶脆性的產生原因及抑制方法的研究[D];燕山大學;2003年

5 姜雯;超級馬氏體不銹鋼組織性能及逆變奧氏體機制的研究[D];昆明理工大學;2014年

6 婁建新;珠光體鋼與奧氏體鋼異質接頭碳遷移機制及影響因素研究[D];沈陽工業(yè)大學;2014年

7 蔣志俊;過冷高氮奧氏體中溫回火分解機制的研究[D];上海交通大學;2010年

相關碩士學位論文 前10條

1 王崗;高比強鐵錳基奧氏體鋼設計基礎研究[D];大連交通大學;2015年

2 方曉陽;加工工藝對奧氏體先進高強鋼組織與力學性能的影響[D];浙江大學;2016年

3 徐天帥;軋制及熱處理工藝對Fe-7Mn鋼的顯微結構與拉伸性能的影響[D];東北大學;2014年

4 任善平;三種奧氏體鋼在模擬氣氛/煤灰環(huán)境中的腐蝕行為研究[D];南昌航空大學;2016年

5 胡昌文;珠光體鋼和奧氏體鋼焊接工藝優(yōu)化及其接頭性能研究[D];河南科技大學;2016年

6 匡步肖;奧氏體含量及其機械穩(wěn)定性對Fe-15Cr-1Mo-0.4N-0.3C不銹鋼拉伸性能的影響[D];武漢科技大學;2016年

7 康杰;碳氮增強合金化奧氏體鋼及其力學行為的研究[D];燕山大學;2012年

8 李曉英;奧氏體變形對低碳高硅鋼等溫貝氏體組織的影響[D];燕山大學;2013年

9 賀延明;奧氏體鋼冷軋及退火后的組織與性能研究[D];燕山大學;2014年

10 常帥;高錳奧氏體鋼中碳化釩沉淀機制與強化機理的研究[D];大連交通大學;2013年

,

本文編號:2181280

資料下載
論文發(fā)表

本文鏈接:http://www.lk138.cn/shoufeilunwen/gckjbs/2181280.html


Copyright(c)文論論文網All Rights Reserved | 網站地圖 |

版權申明:資料由用戶95576***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com