中国韩国日本在线观看免费,A级尤物一区,日韩精品一二三区无码,欧美日韩少妇色

當前位置:主頁 > 碩博論文 > 工程博士論文 >

黑曲霉高產檸檬酸機制及代謝調控研究

發(fā)布時間:2018-08-12 13:58
【摘要】:檸檬酸作為生產量最大的有機酸,廣泛應用于食品、醫(yī)藥、洗滌劑和化妝品等領域。目前檸檬酸主要通過黑曲霉進行深層有氧發(fā)酵來生產,產量和轉化率均已達到較高水平,但根據Alvarez-Vasquez的模型,仍然有提高空間,要進一步加強檸檬酸的生產需要從基因組和轉錄組水平探索黑曲霉高產檸檬酸機制,以此來指導代謝調控。此外,檸檬酸生產菌株經過多輪誘變形成短粗菌絲且細胞壁增厚,遺傳轉化困難且缺少有力的代謝調控工具,需要研究適用于檸檬酸生產菌株的轉化方法和代謝調控元件。本論文對黑曲霉檸檬酸工業(yè)生產菌株H915-1建立了遺傳轉化方法,并以H915-1及其誘變株為研究對象,通過比較基因組學和轉錄組學,探討了黑曲霉高產檸檬酸的機制,進而發(fā)現了低pH誘導的啟動子Pgas可以作為動態(tài)調控的基因元件,最后通過調整葡萄糖轉運蛋白的表達提高了檸檬酸的產量。主要研究結果如下:(1)對黑曲霉H915-1的原生質體形成條件進行優(yōu)化并建立了遺傳轉化系統(tǒng)。最優(yōu)酶解液配比為5 mg×m L~(-1)溶壁酶、0.2 U×m L~(-1)幾丁質酶和460 U×m L~(-1)葡萄糖醛酸酶;優(yōu)化后的原生質體制備條件:滲透壓穩(wěn)定劑為0.7 M KCl,菌體量15 mg,酶解溫度37°C,菌球直徑50μm。采用PEG介導法,利用共轉化的方式,可以使2個表達框整合到黑曲霉基因組中,共整合概率為58%。在未敲除非同源末端連接(non-homologous end joining,NHEJ)基因Ku-70的情況下,利用2.3 kb同源臂對oah進行敲除,同源整合的概率為65%,基因敲除菌株在整個發(fā)酵過程中不再合成草酸。(2)以黑曲霉H915-1為出發(fā)菌株,利用等離子誘變和高通量篩選獲得2株低產菌株A1和L2,它們的檸檬酸產量分別由出發(fā)菌株的157 g×L~(-1)降為117 g×L~(-1)和76 g×L~(-1)。對生產菌株和誘變株A1和L2進行基因組測序、拼接和注釋,它們的基因組大小分別為35.98 Mb、34.64 Mb和36.45 Mb,共發(fā)現59個基因家族存在差異,單核苷酸多態(tài)性(Single nucleotide polymorphism,SNP)和插入缺失(insertion-deletion,INDEL)位點1210處,結構性變異(Structural variation,SV)52處,共涉及35個基因的表達。中心代謝通路的順烏頭酸酶和γ-氨基丁酸(γ-aminobutyric acid,GABA)通路的琥珀酸半醛脫氫酶基因發(fā)生變異。(3)對黑曲霉H915-1在檸檬酸合成階段的4個時間點和菌體生長階段的轉錄組數據進行分析,發(fā)現479個基因的表達發(fā)生變化。確定了黑曲霉中心代謝通路的主效基因。糖酵解通路的大部分酶的表達沒有變化,磷酸丙糖異構酶表達上調,丙酮酸激酶表達下調,TCA循環(huán)大部分酶的表達下調;發(fā)現GABA通路關鍵酶的表達上調;ATP-檸檬酸裂解酶表達上調,與TCA循環(huán)一起構成了一條消耗ATP的無效循環(huán);鑒定到35個轉運蛋白表達持續(xù)上調,包含3個有機陰離子轉運蛋白,以及1個單羧酸轉運蛋白。(4)通過轉錄組分析,篩選到低pH誘導表達的基因gas并進行啟動子預測,利用報告基因熒光蛋白(s GFP)進行啟動子表達強度的驗證,Pgas在pH 2.0時被誘導而強烈表達s GFP,表達強度和Pgpd A在pH 2.0時啟動表達的能力一致。利用Pgas啟動順烏頭酸脫羧酶(s CAD)基因的表達賦予黑曲霉H915-1合成衣康酸的能力,發(fā)酵24 h和108 h的s CAD的表達量比8 h的表達量分別增加了2.37和3.23倍,轉化子的衣康酸產量達到4.92 g×L~(-1),為Pgpd A-CAD轉化子產量的5倍。利用q PCR對Pgas的誘導能力進行驗證,發(fā)現Pgas僅受pH的誘導,受酸種類的影響很小,酸根離子濃度對Pgas沒有影響,且pH與Pgas的啟動能力存在線性關系。通過DNA pull-down技術鑒定到2個與Pgas特異結合的轉錄調節(jié)因子XP_001388781.2和XP_001396281。(5)基于轉錄組分析,對假定的葡萄糖轉運蛋白進行進化樹分析和序列比對分析,獲得與Kl HGT1親緣關系較近的evm.model.unitig_0.1770序列,經跨膜預測該蛋白含有11個跨膜區(qū)域,N端在細胞膜內,C端在胞內,命名為An HGT1。在限制性葡萄糖培養(yǎng)基上進行生長實驗,HGT轉化子的菌落直徑比對照增加50%~150%。在發(fā)酵后期補加30 g×L~(-1)葡萄糖后HGT1轉化子完全消耗葡萄糖的時間比H915-1減少12 h。HGT1轉化子的檸檬酸產量比對照增加了14.7%,發(fā)酵時間縮短了6 h,最大比產酸速率提升了29.5%,提高了發(fā)酵生產強度。
[Abstract]:Citric acid, as the most productive organic acid, is widely used in food, medicine, detergent, cosmetics and other fields. At present, citric acid is mainly produced by Aspergillus Niger deep aerobic fermentation. The yield and conversion rate have reached a higher level. However, according to the Alvarez-Vasquez model, there is still room for improvement, and citric acid should be further strengthened. The production of Aspergillus Niger requires exploring the mechanism of high citric acid production at the genome and transcriptome levels to guide metabolic regulation. In addition, citric acid producing strains undergo multiple rounds of mutagenesis to form short thick mycelia with thickened cell walls, difficult genetic transformation and lack of powerful metabolic control tools. Therefore, it is necessary to study the transformation of citric acid producing strains. METHODS AND METABOLISM REGULATING ELEMENTS.A genetic transformation method was established for Aspergillus Niger citric acid producing strain H915-1. Taking H915-1 and its mutants as research objects, the mechanism of citric acid production by Aspergillus niger was explored by comparative genomics and transcriptome, and the promoter Pgas induced by low pH was found to be a dynamic regulator. The main results are as follows: (1) The protoplast formation conditions of Aspergillus Niger H915-1 were optimized and a genetic transformation system was established. The optimal ratio of enzymatic hydrolysate was 5 mg (-1) lysozyme, 0.2 U (-1) chitinase and 460 U 65507 (-1) glucuronidase; optimized conditions for protoplast preparation: osmotic stabilizer 0.7 M KCl, cell mass 15 mg, enzymatic hydrolysis temperature 37 In the case of NHEJ gene Ku-70, the 2.3 KB homologous arm was used to knock out oah, and the probability of homologous integration was 65%. Oxalic acid was not synthesized in the whole fermentation process. (2) Two low-yield strains A1 and L2 were obtained by plasma mutation and high throughput screening with Aspergillus Niger H915-1 as the starting strain. Citric acid production decreased from 157 g (-1) to 117 g (-1) and 76 g (-1), respectively. Genome sequencing, splicing and annotation were performed on the production strain and mutant strains A1 and L2. Their genome sizes were 35.98 Mb, 34.64 Mb and 36.45 Mb, respectively. A total of 59 gene families were found to be different and single nucleotide polymorphisms (SNPs) were detected. Polymorphism, SNP, and insertion-deletion (INDEL) loci were 1210, and structural variation (SV) 52, involving 35 genes. Cis-aconitase and gamma-aminobutyric acid (GABA) pathways in the central metabolic pathway were mutated in succinic hemialdehyde dehydrogenase genes. The transcriptome data of 15-1 were analyzed at four time points during citric acid synthesis and at the growth stage of the bacteria, and 479 genes were found to have changed. The main genes in the central metabolic pathway of Aspergillus niger were identified. The expression of most enzymes in the glycolysis pathway remained unchanged, the expression of triose phosphate isomerase was up-regulated, and pyruvate kinase was down-regulated. The expression of most of the enzymes in the TCA cycle was down-regulated; the expression of the key enzymes in the GABA pathway was up-regulated; the expression of ATP-citrate lyase was up-regulated, which together with the TCA cycle constituted an ineffective ATP-depleting cycle; 35 transporters were identified to be up-regulated continuously, including three organic anion transporters and one monocarboxylate transporter. Transcriptome analysis showed that low-pH-induced gene gas was screened and its promoter was predicted. Promoter expression intensity was verified by reporter gene fluorescent protein (s GFP). Pgas was induced to express s GFP strongly at pH 2.0, and the expression intensity was consistent with that of PgpdA at pH 2.0. The expression of CAD gene endowed Aspergillus Niger H915-1 with the ability to synthesize itaconic acid. The expression of s CAD at 24 h and 108 h increased 2.37 and 3.23 times than that at 8 h, respectively. The yields of itaconic acid reached 4.92 g (-1) and 5 times that of Pgpd A-CAD. The induction ability of Pgas was verified by q-PCR. Two transcription regulators, XP_001388781.2 and XP_001396281, specifically binding to Pgas were identified by DNA pull-down technique. Evm. model. unitig_0. 1770 sequence, which was closely related to Kl HGT1, was obtained by chemical tree analysis and sequence alignment analysis. It was predicted that the protein contained 11 transmembrane regions, N-terminal in the cell membrane and C-terminal in the cell membrane, named ANHGT1. The total glucose consumption time of HGT1 transformer was 12 h less than that of H915-1. The citric acid yield of HGT1 transformer was increased by 14.7%, fermentation time was shortened by 6 h, and the maximum specific acid production rate was increased by 29.5%.
【學位授予單位】:江南大學
【學位級別】:博士
【學位授予年份】:2017
【分類號】:TQ921.1

【相似文獻】

相關期刊論文 前1條

1 孔宏智;;從基因組到多樣性[J];生物多樣性;2014年01期

相關會議論文 前3條

1 李秋實;徐江;朱英杰;孫超;宋經元;陳士林;;基于流式細胞術的赤芝基因組大小估測[A];第十一屆全國青年藥學工作者最新科研成果交流會論文集[C];2012年

2 張琳琳;李莉;許飛;亓海剛;王曉通;張國范;;長牡蠣基因組fosmid文庫的構建及分析[A];中國動物學會、中國海洋湖沼學會貝類學會分會第十四次學會研討會論文摘要匯編[C];2009年

3 陳曉丹;王永;盧軍;朱利泉;王小佳;;蕓薹屬A基因組DNA封阻下的C染色體組核型分析[A];第九屆西南三省一市生物化學與分子生物學學術交流會論文集[C];2008年

相關重要報紙文章 前10條

1 宗合;科學家破譯木豆基因組將加速育種發(fā)展[N];糧油市場報;2011年

2 記者 夏靜 通訊員 范敬群;我首個果樹基因組序列圖譜完成[N];光明日報;2012年

3 鐵錚 記者 趙鳳華;我科學家繪制出毛白楊基因組序列框架圖[N];科技日報;2011年

4 仲亞;靈芝全基因組精細圖譜發(fā)布[N];中國中醫(yī)藥報;2012年

5 記者 譚大躍 通訊員 王靜思 梁藝染;中美科學家合作解碼螞蟻基因組[N];深圳特區(qū)報;2010年

6 記者 張聰;我國首發(fā)丹參基因組框架圖[N];中國中醫(yī)藥報;2010年

7 記者 劉傳書;我科學家繪出大熊貓“晶晶”基因組精細圖[N];科技日報;2009年

8 記者 譚大躍 通訊員 逄莎莎;白菜全基因組研究成果發(fā)表[N];深圳特區(qū)報;2011年

9 記者 吳春燕;石斑魚全基因組序列圖譜繪制完成[N];光明日報;2011年

10 宋明輝;廣東破解石斑魚基因圖譜[N];中國漁業(yè)報;2011年

相關博士學位論文 前10條

1 劉金定;昆蟲基因組注釋方法改進及兩種昆蟲基因組分析[D];南京農業(yè)大學;2014年

2 程虹;一株海洋細菌Gilvimarinus polysaccharolyticus YN3~T多相分類學研究及六株鹽環(huán)境來源微生物全基因組生物信息學分析[D];浙江大學;2015年

3 彭婷婷;新嗜熱菌Thermoanarobacter sp.YS13基因組序列以及生長和發(fā)酵性質的分析[D];華中農業(yè)大學;2016年

4 劉玉玲;棉花基于FISH的單染色體圖譜及亞基因組和Oligo序列鑒定[D];華中農業(yè)大學;2016年

5 殷嫻;黑曲霉高產檸檬酸機制及代謝調控研究[D];江南大學;2017年

6 張麗敏;高梁基因組內大片段獲得與缺失變異挖掘及其與重要農藝性狀的關聯(lián)分析[D];吉林大學;2013年

7 周正奎;全基因組關聯(lián)分析和全基因組預測法解析犬髖關節(jié)疾病[D];西北農林科技大學;2011年

8 黃金龍;馬屬基因組和染色體快速進化的研究[D];內蒙古農業(yè)大學;2015年

9 曹月青;鑒定不同基因組之間差異序列的新方法研究[D];重慶大學;2005年

10 凌娜;節(jié)旋藻/螺旋藻基因組特性初探及硝酸鹽轉運蛋白基因克隆與序列分析[D];中國海洋大學;2006年

相關碩士學位論文 前10條

1 周峰;黑曲霉AS3.350基因組分析和轉錄組表達研究[D];華南理工大學;2015年

2 李奎;谷子基因組中近期節(jié)段式重復研究[D];昆明理工大學;2015年

3 孫宇輝;YH基因組二倍體的分型及組裝[D];華南理工大學;2014年

4 李世杰;結核分枝桿菌基因組重注釋研究[D];電子科技大學;2014年

5 白婷婷;“太歲”的生物學特性及部分基因組測量的研究[D];遼寧大學;2011年

6 龍科任;利用基因組重測序鑒定巴克夏豬的人工選擇痕跡[D];四川農業(yè)大學;2015年

7 楊超;幽門螺桿菌(Helicobacter pylori)比較基因組學分析及基因組減小分子機制的探討[D];中國海洋大學;2015年

8 李建凱;兩株低溫噬菌體生物學特性及基因組解析[D];昆明理工大學;2016年

9 李育先;茄科作物基因組的多重序列比對與進化研究[D];華北理工大學;2016年

10 吳曉龍;皰疹病毒目(Herpesvirales)基因組中微衛(wèi)星序列的比較分析[D];湖南大學;2015年

,

本文編號:2179271

資料下載
論文發(fā)表

本文鏈接:http://www.lk138.cn/shoufeilunwen/gckjbs/2179271.html


Copyright(c)文論論文網All Rights Reserved | 網站地圖 |

版權申明:資料由用戶9dfab***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com