黑曲霉高產(chǎn)檸檬酸機制及代謝調(diào)控研究
[Abstract]:Citric acid, as the most productive organic acid, is widely used in food, medicine, detergent, cosmetics and other fields. At present, citric acid is mainly produced by Aspergillus Niger deep aerobic fermentation. The yield and conversion rate have reached a higher level. However, according to the Alvarez-Vasquez model, there is still room for improvement, and citric acid should be further strengthened. The production of Aspergillus Niger requires exploring the mechanism of high citric acid production at the genome and transcriptome levels to guide metabolic regulation. In addition, citric acid producing strains undergo multiple rounds of mutagenesis to form short thick mycelia with thickened cell walls, difficult genetic transformation and lack of powerful metabolic control tools. Therefore, it is necessary to study the transformation of citric acid producing strains. METHODS AND METABOLISM REGULATING ELEMENTS.A genetic transformation method was established for Aspergillus Niger citric acid producing strain H915-1. Taking H915-1 and its mutants as research objects, the mechanism of citric acid production by Aspergillus niger was explored by comparative genomics and transcriptome, and the promoter Pgas induced by low pH was found to be a dynamic regulator. The main results are as follows: (1) The protoplast formation conditions of Aspergillus Niger H915-1 were optimized and a genetic transformation system was established. The optimal ratio of enzymatic hydrolysate was 5 mg (-1) lysozyme, 0.2 U (-1) chitinase and 460 U 65507 (-1) glucuronidase; optimized conditions for protoplast preparation: osmotic stabilizer 0.7 M KCl, cell mass 15 mg, enzymatic hydrolysis temperature 37 In the case of NHEJ gene Ku-70, the 2.3 KB homologous arm was used to knock out oah, and the probability of homologous integration was 65%. Oxalic acid was not synthesized in the whole fermentation process. (2) Two low-yield strains A1 and L2 were obtained by plasma mutation and high throughput screening with Aspergillus Niger H915-1 as the starting strain. Citric acid production decreased from 157 g (-1) to 117 g (-1) and 76 g (-1), respectively. Genome sequencing, splicing and annotation were performed on the production strain and mutant strains A1 and L2. Their genome sizes were 35.98 Mb, 34.64 Mb and 36.45 Mb, respectively. A total of 59 gene families were found to be different and single nucleotide polymorphisms (SNPs) were detected. Polymorphism, SNP, and insertion-deletion (INDEL) loci were 1210, and structural variation (SV) 52, involving 35 genes. Cis-aconitase and gamma-aminobutyric acid (GABA) pathways in the central metabolic pathway were mutated in succinic hemialdehyde dehydrogenase genes. The transcriptome data of 15-1 were analyzed at four time points during citric acid synthesis and at the growth stage of the bacteria, and 479 genes were found to have changed. The main genes in the central metabolic pathway of Aspergillus niger were identified. The expression of most enzymes in the glycolysis pathway remained unchanged, the expression of triose phosphate isomerase was up-regulated, and pyruvate kinase was down-regulated. The expression of most of the enzymes in the TCA cycle was down-regulated; the expression of the key enzymes in the GABA pathway was up-regulated; the expression of ATP-citrate lyase was up-regulated, which together with the TCA cycle constituted an ineffective ATP-depleting cycle; 35 transporters were identified to be up-regulated continuously, including three organic anion transporters and one monocarboxylate transporter. Transcriptome analysis showed that low-pH-induced gene gas was screened and its promoter was predicted. Promoter expression intensity was verified by reporter gene fluorescent protein (s GFP). Pgas was induced to express s GFP strongly at pH 2.0, and the expression intensity was consistent with that of PgpdA at pH 2.0. The expression of CAD gene endowed Aspergillus Niger H915-1 with the ability to synthesize itaconic acid. The expression of s CAD at 24 h and 108 h increased 2.37 and 3.23 times than that at 8 h, respectively. The yields of itaconic acid reached 4.92 g (-1) and 5 times that of Pgpd A-CAD. The induction ability of Pgas was verified by q-PCR. Two transcription regulators, XP_001388781.2 and XP_001396281, specifically binding to Pgas were identified by DNA pull-down technique. Evm. model. unitig_0. 1770 sequence, which was closely related to Kl HGT1, was obtained by chemical tree analysis and sequence alignment analysis. It was predicted that the protein contained 11 transmembrane regions, N-terminal in the cell membrane and C-terminal in the cell membrane, named ANHGT1. The total glucose consumption time of HGT1 transformer was 12 h less than that of H915-1. The citric acid yield of HGT1 transformer was increased by 14.7%, fermentation time was shortened by 6 h, and the maximum specific acid production rate was increased by 29.5%.
【學(xué)位授予單位】:江南大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:TQ921.1
【相似文獻】
相關(guān)期刊論文 前1條
1 孔宏智;;從基因組到多樣性[J];生物多樣性;2014年01期
相關(guān)會議論文 前3條
1 李秋實;徐江;朱英杰;孫超;宋經(jīng)元;陳士林;;基于流式細胞術(shù)的赤芝基因組大小估測[A];第十一屆全國青年藥學(xué)工作者最新科研成果交流會論文集[C];2012年
2 張琳琳;李莉;許飛;亓海剛;王曉通;張國范;;長牡蠣基因組fosmid文庫的構(gòu)建及分析[A];中國動物學(xué)會、中國海洋湖沼學(xué)會貝類學(xué)會分會第十四次學(xué)會研討會論文摘要匯編[C];2009年
3 陳曉丹;王永;盧軍;朱利泉;王小佳;;蕓薹屬A基因組DNA封阻下的C染色體組核型分析[A];第九屆西南三省一市生物化學(xué)與分子生物學(xué)學(xué)術(shù)交流會論文集[C];2008年
相關(guān)重要報紙文章 前10條
1 宗合;科學(xué)家破譯木豆基因組將加速育種發(fā)展[N];糧油市場報;2011年
2 記者 夏靜 通訊員 范敬群;我首個果樹基因組序列圖譜完成[N];光明日報;2012年
3 鐵錚 記者 趙鳳華;我科學(xué)家繪制出毛白楊基因組序列框架圖[N];科技日報;2011年
4 仲亞;靈芝全基因組精細圖譜發(fā)布[N];中國中醫(yī)藥報;2012年
5 記者 譚大躍 通訊員 王靜思 梁藝染;中美科學(xué)家合作解碼螞蟻基因組[N];深圳特區(qū)報;2010年
6 記者 張聰;我國首發(fā)丹參基因組框架圖[N];中國中醫(yī)藥報;2010年
7 記者 劉傳書;我科學(xué)家繪出大熊貓“晶晶”基因組精細圖[N];科技日報;2009年
8 記者 譚大躍 通訊員 逄莎莎;白菜全基因組研究成果發(fā)表[N];深圳特區(qū)報;2011年
9 記者 吳春燕;石斑魚全基因組序列圖譜繪制完成[N];光明日報;2011年
10 宋明輝;廣東破解石斑魚基因圖譜[N];中國漁業(yè)報;2011年
相關(guān)博士學(xué)位論文 前10條
1 劉金定;昆蟲基因組注釋方法改進及兩種昆蟲基因組分析[D];南京農(nóng)業(yè)大學(xué);2014年
2 程虹;一株海洋細菌Gilvimarinus polysaccharolyticus YN3~T多相分類學(xué)研究及六株鹽環(huán)境來源微生物全基因組生物信息學(xué)分析[D];浙江大學(xué);2015年
3 彭婷婷;新嗜熱菌Thermoanarobacter sp.YS13基因組序列以及生長和發(fā)酵性質(zhì)的分析[D];華中農(nóng)業(yè)大學(xué);2016年
4 劉玉玲;棉花基于FISH的單染色體圖譜及亞基因組和Oligo序列鑒定[D];華中農(nóng)業(yè)大學(xué);2016年
5 殷嫻;黑曲霉高產(chǎn)檸檬酸機制及代謝調(diào)控研究[D];江南大學(xué);2017年
6 張麗敏;高梁基因組內(nèi)大片段獲得與缺失變異挖掘及其與重要農(nóng)藝性狀的關(guān)聯(lián)分析[D];吉林大學(xué);2013年
7 周正奎;全基因組關(guān)聯(lián)分析和全基因組預(yù)測法解析犬髖關(guān)節(jié)疾病[D];西北農(nóng)林科技大學(xué);2011年
8 黃金龍;馬屬基因組和染色體快速進化的研究[D];內(nèi)蒙古農(nóng)業(yè)大學(xué);2015年
9 曹月青;鑒定不同基因組之間差異序列的新方法研究[D];重慶大學(xué);2005年
10 凌娜;節(jié)旋藻/螺旋藻基因組特性初探及硝酸鹽轉(zhuǎn)運蛋白基因克隆與序列分析[D];中國海洋大學(xué);2006年
相關(guān)碩士學(xué)位論文 前10條
1 周峰;黑曲霉AS3.350基因組分析和轉(zhuǎn)錄組表達研究[D];華南理工大學(xué);2015年
2 李奎;谷子基因組中近期節(jié)段式重復(fù)研究[D];昆明理工大學(xué);2015年
3 孫宇輝;YH基因組二倍體的分型及組裝[D];華南理工大學(xué);2014年
4 李世杰;結(jié)核分枝桿菌基因組重注釋研究[D];電子科技大學(xué);2014年
5 白婷婷;“太歲”的生物學(xué)特性及部分基因組測量的研究[D];遼寧大學(xué);2011年
6 龍科任;利用基因組重測序鑒定巴克夏豬的人工選擇痕跡[D];四川農(nóng)業(yè)大學(xué);2015年
7 楊超;幽門螺桿菌(Helicobacter pylori)比較基因組學(xué)分析及基因組減小分子機制的探討[D];中國海洋大學(xué);2015年
8 李建凱;兩株低溫噬菌體生物學(xué)特性及基因組解析[D];昆明理工大學(xué);2016年
9 李育先;茄科作物基因組的多重序列比對與進化研究[D];華北理工大學(xué);2016年
10 吳曉龍;皰疹病毒目(Herpesvirales)基因組中微衛(wèi)星序列的比較分析[D];湖南大學(xué);2015年
,本文編號:2179271
本文鏈接:http://www.lk138.cn/shoufeilunwen/gckjbs/2179271.html