中国韩国日本在线观看免费,A级尤物一区,日韩精品一二三区无码,欧美日韩少妇色

當(dāng)前位置:主頁(yè) > 碩博論文 > 工程博士論文 >

混合多端直流輸電運(yùn)行特性研究

發(fā)布時(shí)間:2018-08-07 17:45
【摘要】:傳統(tǒng)直流(LCC-HVDC)與柔性直流(VSC-HVDC)具有各自的優(yōu)勢(shì)與劣勢(shì),二者有著不同的適用場(chǎng)合。傳統(tǒng)直流輸送容量大、損耗低,適合大容量遠(yuǎn)距離輸電,而柔性直流控制靈活、便于構(gòu)成多端直流,適合新能源接入與向弱交流系統(tǒng)供電。混合多端直流能夠結(jié)合傳統(tǒng)直流和柔性直流各自的優(yōu)勢(shì),實(shí)現(xiàn)多電源供電、多落點(diǎn)受電,提供一種更為靈活、快捷的輸電方式,以獲得最大的經(jīng)濟(jì)和技術(shù)效益。目前電力工業(yè)正朝著加快利用清潔能源以及大規(guī)模電網(wǎng)互聯(lián)的方向發(fā)展,混合多端直流輸電將在電力系統(tǒng)發(fā)展中起到十分重要的作用,而且現(xiàn)有的一些工程已經(jīng)有混合多端直流的雛形和設(shè)想,因此有必要對(duì)混合多端直流的運(yùn)行特性做深入的研究,為混合多端直流的實(shí)際應(yīng)用做好準(zhǔn)備。本文的研究?jī)?nèi)容及相應(yīng)的成果主要有:(1)研究了基于一致性算法的混合多端直流自律分散控制策略。在這種控制方法中,各端子僅通過與相鄰端子的通信即可獲取全局信息,降低了對(duì)通信系統(tǒng)性能和可靠性的要求。各端子既能相對(duì)獨(dú)立地運(yùn)行,又能相互協(xié)作完成系統(tǒng)的優(yōu)化控制目標(biāo);既能實(shí)現(xiàn)各端子運(yùn)行點(diǎn)的精細(xì)調(diào)節(jié),又能根據(jù)實(shí)際情況對(duì)各端子進(jìn)行分組控制。相比于集中控制,這種控制方法無需中心控制單元,將在規(guī)模不斷增大的直流電網(wǎng)中具有廣闊的應(yīng)用前景。(2)研究了影響混合多端直流輸電系統(tǒng)損耗的關(guān)鍵因素。本文經(jīng)過分析指出混合多端直流損耗優(yōu)化需要在兩個(gè)相互矛盾的目標(biāo)中尋求最優(yōu):一方面,為使損耗最小需要使直流電壓盡可能高且功率盡量經(jīng)LCC送出;另一方面,受端LCC在電流較大時(shí)將轉(zhuǎn)為定γ控制,此時(shí)需要將VSC的直流電壓相應(yīng)降低,以避免LCC逆變端流過更多的直流電流,進(jìn)而導(dǎo)致?lián)Q相失敗,而直流電壓的降低將導(dǎo)致?lián)p耗增加。在此基礎(chǔ)上,本文將基于一致性算法的自律分散控制應(yīng)用到混合多端直流的損耗優(yōu)化中,使各個(gè)端子能相互協(xié)作達(dá)到優(yōu)化目標(biāo)。針對(duì)不同的運(yùn)行模式,本文還比較了全局信息完整程度不同以及參與優(yōu)化控制的端子數(shù)目變化時(shí)的優(yōu)化結(jié)果,得出端子獲得的全局信息完整程度越高、參與優(yōu)化控制的端子越多,系統(tǒng)損耗越小的結(jié)論。(3)研究了適用于混合多端直流中連接風(fēng)電孤島的VSC端子的控制策略。由于風(fēng)能的隨機(jī)性和波動(dòng)性,風(fēng)電基地并網(wǎng)宜采取孤島運(yùn)行方式并由VSC提供交流電壓,因此本文設(shè)計(jì)了適用于混合多端直流中VSC端子的模型預(yù)測(cè)控制。該控制策略對(duì)VSC的交直流側(cè)均建立了預(yù)測(cè)模型,且不含PI環(huán)節(jié),可以直接求取幾個(gè)采樣周期內(nèi)調(diào)制波的最優(yōu)解,避免了與雙饋風(fēng)機(jī)控制器中PI環(huán)節(jié)的相互影響,且在風(fēng)速波動(dòng)、交直流故障時(shí)有較好的抗擾動(dòng)能力及故障恢復(fù)性能。(4)研究了交流背景諧波通過MMC的傳遞及其引起的直流網(wǎng)絡(luò)諧振問題,并設(shè)計(jì)了相應(yīng)的諧波抑制控制策略。本文首先從理論上分析了交流系統(tǒng)背景諧波電壓對(duì)MMC橋臂電壓的影響,揭示了背景諧波通過MMC向直流側(cè)以及遠(yuǎn)端交流系統(tǒng)的傳遞機(jī)理。然后以MMC構(gòu)成的4端直流輸電系統(tǒng)為例,分析了直流網(wǎng)絡(luò)的頻率阻抗特性,得出直流網(wǎng)絡(luò)諧振引起諧波放大現(xiàn)象的原因。在此基礎(chǔ)上,設(shè)計(jì)了利用MMC子模塊電容儲(chǔ)能能力的諧波抑制控制策略,抑制了由交流背景諧波引發(fā)的直流網(wǎng)絡(luò)諧振及諧波傳遞。在PSCAD/EMTDC中的仿真表明,本文所提出的控制策略能有效抑制背景諧波向直流網(wǎng)絡(luò)的傳播,避免直流網(wǎng)絡(luò)由于背景諧波產(chǎn)生諧振現(xiàn)象。在由MMC和LCC構(gòu)成的混合多端直流中,直流網(wǎng)絡(luò)依然會(huì)存在若干諧振頻率,本文提出的利用MMC子模塊電容儲(chǔ)能能力的諧波抑制控制策略也可用于抑制混合多端直流的諧波傳遞。
[Abstract]:Traditional DC (LCC-HVDC) and flexible DC (VSC-HVDC) have their own advantages and disadvantages, the two have different applications. The traditional DC transmission capacity is large, low loss, suitable for large capacity long distance transmission, flexible DC control flexible, easy to form multi terminal DC, suitable for new energy access and power supply to weak AC system. Hybrid multi end direct Combined with the advantages of traditional DC and flexible DC, the flow can supply power supply with multi power supply, and provide a more flexible and fast transmission mode to obtain the greatest economic and technical benefits. At present, the electric power industry is developing to speed up the use of clean energy and large scale power grid interconnection, and mixed multi terminal direct current transmission. Electricity will play a very important role in the development of the power system, and some of the existing projects already have the prototype and assumption of mixed multi terminal DC. Therefore, it is necessary to do a thorough study on the running characteristics of the mixed multi terminal DC, and prepare for the practical application of the Mixed Multi terminal DC. The main contents of this paper are as follows: (1) the hybrid multi terminal DC self-control decentralized control strategy based on the conformance algorithm is studied. In this control method, the terminals can obtain the global information only through communication with adjacent terminals, and reduce the requirements for the performance and reliability of the communication system. The terminals can run in relative independence and cooperate with each other to complete the optimization of the system. The control target can not only realize the fine adjustment of the terminal operation points, but also can control the terminals according to the actual conditions. Compared with the centralized control, this control method does not need the central control unit, and it will have a wide application foreground in the increasing scale of the DC power grid. (2) the influence of mixed multiterminal HVDC system is studied. It is pointed out that the optimization of mixed multiterminal DC loss needs to seek the best of two conflicting targets: on the one hand, to make the minimum loss of the DC voltage as high as possible and the power as far as possible through LCC; on the other hand, the end LCC will turn to the fixed gamma control when the current is large, and VSC is required at this time. The DC voltage is reduced so as to avoid more DC current flow through the LCC inverter end, which will lead to the failure of the commutation, and the decrease of the DC voltage will lead to the increase of loss. On this basis, this paper applies the self disciplined decentralized control based on the consistency algorithm to the loss loss optimization of mixed multi terminal DC, so that each terminal can cooperate with each other to reach the advantage of each other. Aiming at different operation modes, this paper also compares the optimization results when the global information integrity is different and the number of terminals participating in the optimization control. The conclusion is that the higher the global information integrity is, the more terminals involved in the optimization control, the smaller the loss of the system loss. (3) the study is applicable to the mixed multi terminal. The control strategy of the VSC terminal connected to the wind power isolated island in DC. Due to the randomness and volatility of wind energy, the wind power base should take the island operation mode and provide the AC voltage with the VSC. Therefore, this paper designs the model predictive control for the VSC terminal in the mixed multi terminal DC. The control strategy has set up the preview of the AC and DC side of the VSC. The test model, without PI link, can obtain the optimal solution of modulation wave in several sampling periods, avoid the interaction with the PI link in the doubly fed fan controller, and have good anti disturbance ability and fault recovery performance when the wind speed fluctuates and the AC and DC faults. (4) studying the transmission of the AC background harmonics through the MMC and its cause. The harmonic suppression control strategy of DC network is designed and the corresponding harmonic suppression control strategy is designed. Firstly, the influence of the background harmonic voltage on the MMC bridge arm voltage is analyzed theoretically, and the transmission mechanism of the background harmonics through the MMC to the DC side and the remote AC system is revealed. Then the 4 terminal DC transmission system composed of MMC is used as an example. The frequency impedance characteristic of DC network is analyzed and the reason of harmonic amplification caused by DC network resonance is obtained. On this basis, a harmonic suppression control strategy using MMC sub module capacitance energy storage capacity is designed to suppress DC network resonance and harmonic transmission caused by the AC background harmonics. The simulation in PSCAD/EMTDC shows that this paper is used in this paper. The proposed control strategy can effectively suppress the propagation of the background harmonics to the DC network and avoid the resonant phenomenon of the DC network due to the background harmonics. In the mixed multi terminal DC system composed of MMC and LCC, the DC network still has several resonant frequencies. This paper proposes a harmonic suppression control strategy using the capacitive energy storage capacity of the MMC sub module. It can also be used to suppress the harmonic transmission of hybrid multiterminal DC.
【學(xué)位授予單位】:華北電力大學(xué)(北京)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM721.1

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 張偉;;樞紐中多個(gè)場(chǎng)的信號(hào)集中及分散控制方案[J];鐵路通信信號(hào)工程技術(shù);2013年05期

2 李嗣福;;模型預(yù)測(cè)控制及其應(yīng)用[J];機(jī)械與電子;1990年01期

3 李正強(qiáng);張怡哲;鄧建華;陳琪;;基于模型預(yù)測(cè)控制的非線性飛行控制系統(tǒng)研究[J];飛行力學(xué);2009年01期

4 馬艷;卜麗;孫長(zhǎng)江;;基于模型預(yù)測(cè)控制的乳化物干燥控制系統(tǒng)[J];制造業(yè)自動(dòng)化;2011年15期

5 劉向杰;孔小兵;;電力工業(yè)復(fù)雜系統(tǒng)模型預(yù)測(cè)控制——現(xiàn)狀與發(fā)展[J];中國(guó)電機(jī)工程學(xué)報(bào);2013年05期

6 彭勇剛;韋巍;王均;;時(shí)滯約束系統(tǒng)的神經(jīng)動(dòng)態(tài)優(yōu)化模型預(yù)測(cè)控制[J];儀器儀表學(xué)報(bào);2013年05期

7 陳國(guó)定;饒寧;;混凝投藥系統(tǒng)的雙層結(jié)構(gòu)模型預(yù)測(cè)控制策略[J];浙江工業(yè)大學(xué)學(xué)報(bào);2013年04期

8 崔連德;;繼續(xù)向分散控制邁進(jìn)[J];儀表工業(yè);1989年01期

9 劉子豐,高廣民;關(guān)于交聯(lián)系統(tǒng)分散控制的進(jìn)一步研究[J];東北工學(xué)院學(xué)報(bào);1990年05期

10 張慶靈;廣義交聯(lián)系統(tǒng)的分散控制[J];東北工學(xué)院學(xué)報(bào);1993年05期

相關(guān)會(huì)議論文 前10條

1 周帝;趙可君;;模型預(yù)測(cè)控制中的硬約束松化研究[A];全國(guó)冶金自動(dòng)化信息網(wǎng)2014年會(huì)論文集[C];2014年

2 于海芬;譚文;;四容水箱的部分分散控制[A];第25屆中國(guó)控制與決策會(huì)議論文集[C];2013年

3 郭令忠;李彥平;徐心和;;實(shí)時(shí)并發(fā)離散事件動(dòng)態(tài)系統(tǒng)的分散控制[A];1993年控制理論及其應(yīng)用年會(huì)論文集[C];1993年

4 鐘萬勰;吳志剛;高強(qiáng);梁以德;;H_∞分散控制的模態(tài)綜合法[A];第二十一屆中國(guó)控制會(huì)議論文集[C];2002年

5 孫妙平;年曉紅;;關(guān)聯(lián)電力大系統(tǒng)的非線性分散控制[A];第二十七屆中國(guó)控制會(huì)議論文集[C];2008年

6 楊馬英;;模型預(yù)測(cè)控制的性能監(jiān)視與評(píng)價(jià)——綜述[A];第二十一屆中國(guó)控制會(huì)議論文集[C];2002年

7 武俊峰;王振英;;基于狀態(tài)觀測(cè)器的約束魯棒模型預(yù)測(cè)控制[A];04'中國(guó)企業(yè)自動(dòng)化和信息化建設(shè)論壇暨中南六省區(qū)自動(dòng)化學(xué)會(huì)學(xué)術(shù)年會(huì)專輯[C];2004年

8 周明;周堅(jiān)剛;余達(dá)太;;鋼鐵企業(yè)模型預(yù)測(cè)控制技術(shù)綜述[A];冶金軋制過程自動(dòng)化技術(shù)交流會(huì)論文集[C];2005年

9 張聚;張海華;;時(shí)延網(wǎng)絡(luò)控制系統(tǒng)的顯式模型預(yù)測(cè)控制[A];Proceedings of the 2011 Chinese Control and Decision Conference(CCDC)[C];2011年

10 孫功勤;李小華;陳雪波;;改進(jìn)的多區(qū)域環(huán)型電力系統(tǒng)魯棒分散控制方法[A];2007中國(guó)控制與決策學(xué)術(shù)年會(huì)論文集[C];2007年

相關(guān)博士學(xué)位論文 前10條

1 許冬;混合多端直流輸電運(yùn)行特性研究[D];華北電力大學(xué)(北京);2017年

2 孫銀鋒;柔性直流輸電系統(tǒng)建模及小干擾穩(wěn)定性研究[D];華北電力大學(xué)(北京);2017年

3 孔小兵;非線性模型預(yù)測(cè)控制及其在發(fā)電過程控制中的應(yīng)用[D];華北電力大學(xué);2014年

4 張浪文;網(wǎng)絡(luò)信息模式下分布式協(xié)調(diào)模型預(yù)測(cè)控制研究[D];上海交通大學(xué);2015年

5 宋建筑;基于市場(chǎng)機(jī)制的結(jié)構(gòu)分散控制研究[D];大連理工大學(xué);2016年

6 何文杰;原子層沉積系統(tǒng)設(shè)計(jì)及其溫度的模型預(yù)測(cè)控制研究[D];華中科技大學(xué);2016年

7 岳俊紅;復(fù)雜工業(yè)過程多模型預(yù)測(cè)控制策略及其應(yīng)用研究[D];華北電力大學(xué)(北京);2008年

8 周慶生;建筑結(jié)構(gòu)振動(dòng)的遞階分散控制研究[D];哈爾濱工業(yè)大學(xué);2009年

9 馮少輝;模型預(yù)測(cè)控制工程軟件關(guān)鍵技術(shù)及應(yīng)用研究[D];浙江大學(xué);2003年

10 蘇成利;非線性模型預(yù)測(cè)控制的若干問題研究[D];浙江大學(xué);2006年

相關(guān)碩士學(xué)位論文 前10條

1 邊靖洲;柔性多端直流輸電系統(tǒng)控制策略研究[D];天津大學(xué);2016年

2 李德q,

本文編號(hào):2170841


資料下載
論文發(fā)表

本文鏈接:http://www.lk138.cn/shoufeilunwen/gckjbs/2170841.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶2c7d2***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com