納米金功能化復(fù)合催化劑的制備、表征及其在選擇性氧化中的應(yīng)用
[Abstract]:Selective oxidation of organic matter is involved in many aspects of chemical industry and occupies an important position in the chemical industry. However, the selective oxidation process of organic compounds is due to the existence of more parallel and series reaction, especially in the high temperature conditions, which causes the adverse reaction of the catalyst to be more serious, so that the target product is selectively reduced. High activity and high selectivity catalytic oxidation under mild conditions have attracted wide attention, but it is also a very challenging task. For this reason, the preparation, characterization and application of nano gold functionalized composite catalysts were studied in this paper. The paper is divided into seven chapters. The load of manganese porphyrin metal organic skeleton is studied. The preparation, characterization of Au/MnPS and the selective oxidation of cyclohexene, the preparation of gold centered metal organic framework catalyst AuBTC, characterization and selective oxidation of benzyl alcohol, the preparation of Au/ Al_2O_3 microchannel reactor and its cyclohexane selection on the inner wall coated gold nanoparticle catalyst were studied. The specific conclusions are as follows: first, Au/MnPS. was successfully prepared by hydrothermal synthesis and impregnation. The TEM characterization of the catalyst showed that the MnPS crystal was a dark cubic crystal structure, part of which was light colored amorphous structure, and the gold and particle size of large particles were less than 10nm, indicating that gold nanoparticles were successfully loaded; XRD table. It shows that the structure of MnPS is similar to manganese carbonate, which provides the possible selective oxidation performance of.Au/MnPS catalyzed cyclohexene. The reaction solvent, oxidizer, temperature, reaction time, reaction pressure, the amount of catalyst, the amount of gold load and so on all have influence on the reaction performance. In addition, the amount of cyclohexene is 10mmol, the amount of Au/MnPS gold load is 2wt%, the amount of catalyst is 0.2g, acetonitrile is the solvent and the tert butyl peroxide containing a small amount of water is used as oxidant. The reaction temperature is 35 C and the reaction time 15h is better. At this time, the conversion rate of cyclohexene is the highest and the epoxide cyclohexane is 75.1%, and the height of the cyclohexane is 75.1%. As for cyclohexene oxidation, the amount of cyclohexene is 10mmol, the amount of Au/MnPS gold load is 0.25%, the amount of catalyst is 0.1g, the acetonitrile is the solvent, the 4-5 drop TBHP is the initiator, the reaction temperature is 120, the reaction pressure is 1.2MPa, the reaction time 10h is better, the conversion rate of cyclohexene is the highest at this time, and the epoxide cyclohexane is selective. 83.0%. the catalyst was reused for 4 times without obvious loss of activity, indicating that the catalyst had good cyclic catalytic performance. Then, AuBTC catalyst was successfully prepared by hydrothermal synthesis. The catalyst XRD showed that the catalyst had a crystal structure similar to HKUST-1 (CuBTC), and gold had formed its crystal structure; SEM characterization showed gold and average benzene. After hydrothermal synthesis of formic acid, a new crystal has been formed. This crystal has a lamellar structure of columnar structure.AuBTC used in the selective oxidation of benzyl alcohol by molecular oxygen. The reaction time, reaction temperature, and the amount of catalyst have an effect on the catalytic performance. The amount of benzyl alcohol in the reactant is 10mmol, acetonitrile. For the solvent, 4-5 drops of TBHP as an initiator, the amount of catalyst is 0.10g, the reaction time is 15h, the reaction temperature is 80, the reaction pressure is 1.0MPa, the conversion rate of benzyl alcohol is 11.8%, the selectivity of benzaldehyde is 90.3%., the cycle performance of the catalyst is clear, and the selectivity of benzaldehyde after the reuse of the catalyst is better than that of the catalyst. Finally, the TEM and XRD of the Au/Al_2O_3 microchannel reactor.Au/Al_2O_3 catalyst for the inner wall coated nano gold catalyst were successfully prepared by the internal wall coating method of independent innovation. The nano gold particles in the catalyst were uniformly dispersed in the ultrafine alumina carrier, and the inner wall of the acid washing microtubule was displayed by the SEM characterization in the microtubule before the catalyst coating. The reaction temperature is 180 C, the reaction pressure is 3MPa, the retention time is 4min, the gas and liquid molar ratio of oxygen and cyclohexane is better than 0.3:1, and the conversion rate of cyclohexane is 2.09%, cyclohexanol, cyclohexanone, cyclohexyl hydrogen peroxide and adipic acid are selected. The 29.4%, 39.9%, 2.46% and 18.9%. experiments showed that the coated nano gold catalyst coated with the stainless steel microtubule was feasible and could significantly shorten the time of the reaction and improve the safety of the operation process. In summary, the nano gold functionalized composite catalyst not only had good effect on the selective oxidation of organic matter. It has great potential for industrial application, and has high academic research value. It is worth further exploring.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:TQ426
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 胡健,許廣華;認(rèn)知納米及其應(yīng)用[J];工業(yè)技術(shù)經(jīng)濟(jì);2001年04期
2 ;納米新產(chǎn)品[J];黃金科學(xué)技術(shù);2002年01期
3 張百奇;納米金的應(yīng)用[J];黃金;2003年06期
4 馬琨;透視"納米熱"[J];深圳特區(qū)科技;2004年Z4期
5 蕭斌;;當(dāng)“納米”與“化工”相遇——記湘潭大學(xué)化工學(xué)院副院長(zhǎng)周繼承教授[J];中國(guó)高?萍寂c產(chǎn)業(yè)化;2009年06期
6 湯倩;張燕;王鉅;;納米科技及其在地學(xué)上應(yīng)用[J];科技傳播;2010年22期
7 蔣國(guó)翔;沈珍瑤;牛軍峰;莊玲萍;何天德;;環(huán)境中典型人工納米顆粒物毒性效應(yīng)[J];化學(xué)進(jìn)展;2011年08期
8 丹丘生;;納米金粒子的妙用[J];大科技(科學(xué)之謎);2012年11期
9 滑曉暉;納米新產(chǎn)品——黃金新的工業(yè)用途[J];江西地質(zhì);2001年03期
10 ;國(guó)外納米進(jìn)展[J];中國(guó)新技術(shù)新產(chǎn)品精選;2001年Z1期
相關(guān)會(huì)議論文 前10條
1 廉學(xué)明;金潔;田佳;趙漢英;;具有溫度響應(yīng)可逆收縮的納米金球簇[A];2009年全國(guó)高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集(上冊(cè))[C];2009年
2 李傳新;潘春旭;;納米科技現(xiàn)狀及展望[A];中南地區(qū)第十六屆電子顯微鏡學(xué)術(shù)交流會(huì)論文集[C];2007年
3 何微娜;林豐;郭祥群;;自旋標(biāo)記-發(fā)光納米金多模式探針研究[A];中國(guó)化學(xué)會(huì)第28屆學(xué)術(shù)年會(huì)第9分會(huì)場(chǎng)摘要集[C];2012年
4 余玲;張彥崢;王亞丹;張銀堂;徐茂田;;非標(biāo)記納米金光譜法檢測(cè)雌激素[A];中國(guó)化學(xué)會(huì)第28屆學(xué)術(shù)年會(huì)第9分會(huì)場(chǎng)摘要集[C];2012年
5 郭彬;李青山;;納米功能性紡織品的最新研究進(jìn)展[A];雪蓮杯第10屆功能性紡織品及納米技術(shù)應(yīng)用研討會(huì)論文集[C];2010年
6 賈文峰;李津如;林官華;江龍;;簡(jiǎn)單方法制備單分散納米金花及其表面拉曼增強(qiáng)應(yīng)用[A];中國(guó)化學(xué)會(huì)第十三屆膠體與界面化學(xué)會(huì)議論文摘要集[C];2011年
7 李竟先;鄢程;吳基球;;納米顆粒制備過程中的機(jī)械力化學(xué)效應(yīng)[A];納米材料和技術(shù)應(yīng)用進(jìn)展——全國(guó)第二屆納米材料和技術(shù)應(yīng)用會(huì)議論文集(上卷)[C];2001年
8 唐芳瓊;;尺寸、結(jié)構(gòu)、形貌可控納米顆粒制備與調(diào)變技術(shù)開發(fā)[A];納微粉體制備與應(yīng)用進(jìn)展——2002年納微粉體制備與技術(shù)應(yīng)用研討會(huì)論文集[C];2002年
9 李軍;紀(jì)小慧;洪霞;王連英;賈若昆;菅文平;白玉白;;基于納米晶特性的免疫檢測(cè)研究[A];2003年納米和表面科學(xué)與技術(shù)全國(guó)會(huì)議論文摘要集[C];2003年
10 襲著革;;納米毒理學(xué)研究進(jìn)展[A];中國(guó)毒理學(xué)會(huì)環(huán)境與生態(tài)毒理學(xué)專業(yè)委員會(huì)成立大會(huì)會(huì)議論文集[C];2008年
相關(guān)重要報(bào)紙文章 前10條
1 本報(bào)記者 劉俊;“納米食品”安全存疑[N];廣州日?qǐng)?bào);2010年
2 張陽德;我國(guó)納米生物醫(yī)藥科技發(fā)展的戰(zhàn)略思考[N];科技日?qǐng)?bào);2003年
3 本報(bào)記者 童岱;劉揚(yáng):發(fā)現(xiàn)“神水”之毒[N];北京科技報(bào);2009年
4 本報(bào)記者 賈書哲;撥開迷霧看納米[N];中國(guó)質(zhì)量報(bào);2002年
5 何屹;納米金晶簇的催化活性與大小有關(guān)[N];科技日?qǐng)?bào);2008年
6 本報(bào)記者 李勝;一噸值一億美元[N];深圳商報(bào);2002年
7 李樹龍;小納米 大神通(上篇)[N];中國(guó)黃金報(bào);2001年
8 記者 任荃;納米金球讓基因拷貝不走樣[N];文匯報(bào);2006年
9 中國(guó)包裝聯(lián)合會(huì)紙委會(huì)副秘書長(zhǎng) 陳希榮;微觀色彩學(xué)與包裝設(shè)計(jì)應(yīng)用[N];中國(guó)包裝報(bào);2010年
10 張唯誠;顯微世界中的DNA納米機(jī)器人[N];大眾科技報(bào);2010年
相關(guān)博士學(xué)位論文 前10條
1 劉懿;納米金功能化復(fù)合催化劑的制備、表征及其在選擇性氧化中的應(yīng)用[D];浙江大學(xué);2017年
2 馮永海;Au、Ag、Pd、Cu、Ni納米催化劑設(shè)計(jì)構(gòu)筑與催化氧化還原研究[D];江蘇大學(xué);2015年
3 陳娜;納米金對(duì)膠質(zhì)瘤放射增敏作用的研究[D];蘇州大學(xué);2015年
4 楊潔;寬頻納米結(jié)構(gòu)光天線特性的研究[D];山東大學(xué);2015年
5 張晶;新型納米生物探針的構(gòu)建及其應(yīng)用[D];北京理工大學(xué);2015年
6 陳坤;功能化納米金光學(xué)分子探針的構(gòu)建及其用于三聚氰胺和轉(zhuǎn)基因分析檢測(cè)[D];華中農(nóng)業(yè)大學(xué);2013年
7 秦為為;等離子納米粒子在可視化成像檢測(cè)及納米馬達(dá)中的應(yīng)用[D];中國(guó)科學(xué)院研究生院(上海應(yīng)用物理研究所);2016年
8 董海峰;DNA檢測(cè)與細(xì)胞內(nèi)microRNA分析新方法研究[D];南京大學(xué);2011年
9 張守仁;納米金和二氧化鈦基復(fù)合材料的可控合成、性質(zhì)和催化應(yīng)用研究[D];鄭州大學(xué);2016年
10 李群芳;多功能納米標(biāo)記探針作為信號(hào)放大電化學(xué)免疫傳感器研究[D];福州大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 寇瑞花;殼聚糖基金納米棒的構(gòu)建及其納米藥物載體的研究[D];北京協(xié)和醫(yī)學(xué)院;2015年
2 何路偉;染料敏化的氧化鋅“納米草坪”的構(gòu)建及其光催化制氫性能[D];上海應(yīng)用技術(shù)學(xué)院;2015年
3 熊海巖;鈀、鉑、金基納米催化劑的制備及其性能研究[D];山東大學(xué);2015年
4 席春曉;棒狀金納米晶及類球形銀納米晶的可控制備與性能研究[D];山東大學(xué);2015年
5 謝芳;擇優(yōu)腐蝕制備新穎金鉑異質(zhì)納米結(jié)構(gòu)[D];山東大學(xué);2015年
6 梁瑩;Anti-cMet抗體耦合空心納米金球?qū)m頸癌光熱治療增敏之作用研究[D];山東大學(xué);2015年
7 劉晶;納米金—聲致發(fā)光分析方法研究[D];陜西師范大學(xué);2015年
8 何逸鵬;納米金與不同亞型乳腺癌細(xì)胞相互作用的初步研究[D];福建師范大學(xué);2015年
9 韋正楠;基于富勒烯@金納米等離子體的Fenton催化傳感器研究[D];重慶大學(xué);2015年
10 潘歡歡;一維半導(dǎo)體納米結(jié)構(gòu)可控制備及其光電探測(cè)器的研究[D];蘇州大學(xué);2015年
,本文編號(hào):2170530
本文鏈接:http://www.lk138.cn/shoufeilunwen/gckjbs/2170530.html