中国韩国日本在线观看免费,A级尤物一区,日韩精品一二三区无码,欧美日韩少妇色

蜈蚣博弈悖論的社會偏好與有限認知機制

發(fā)布時間:2020-12-02 11:08
  蜈蚣博弈是經(jīng)濟學中的經(jīng)典動態(tài)博弈,用于模擬長期合作關系,但實驗室結(jié)果表明,玩家常常偏離納什均衡,這被稱為“蜈蚣博弈悖論”。近年來,經(jīng)濟心理學家使用心理博弈論替代傳統(tǒng)博弈論,對博弈結(jié)果作出解釋,認為是基于信念的偏好決定了行動。對此,本文提出,蜈蚣博弈具有豐富變式,能夠反映人們在不同情形下的合作水平,因此可以在驗證心理博弈論的同時,探究博弈的心理機制。本文假設:悖論產(chǎn)生與否取決于博弈條件,其心理機制是社會偏好和有限認知的協(xié)同作用。論文由兩個研究構成。研究一采用不同長度、起始收益和情境的蜈蚣博弈,令玩家進行兩兩互動博弈,觀測玩家的合作水平及其隨時間的變化。結(jié)果發(fā)現(xiàn),僅對照組(8階段×起始收益不一致)中的完全信息情境博弈實現(xiàn)納什均衡;其他條件均偏離均衡,尤其是起始收益一致時,玩家合作水平提高。結(jié)果證實悖論的產(chǎn)生受博弈具體設置的影響。研究二采用眼動追蹤技術,通過角色與起始收益的設置,構建不同動機背景的一次蜈蚣博弈,觀測玩家的合作水平,及其由視覺模式聚類分析得到的認知類別。結(jié)果發(fā)現(xiàn),首先,有限認知具有普遍性,約五分之四的玩家僅關注博弈的局部信息;其次,社會偏好具有累加性,不同動機背景的合作水平出現(xiàn)... 

【文章來源】:閩南師范大學福建省

【文章頁數(shù)】:71 頁

【學位級別】:碩士

【部分圖文】:

蜈蚣博弈悖論的社會偏好與有限認知機制


蜈蚣博弈展開型表征(Rosenthal,1981)

示意圖,博弈論,心理,邏輯


第1章文獻綜述9明推理的結(jié)果,這意味著玩家必須擁有相同的初始一階信念,并都能對他人的信念得出正確的結(jié)論,但事實上玩家不按均衡進行博弈,且當玩家觀察到對手作出不符合期待的行動時,可以改變他們更高階的信念。1.2.3兩大理論的主要區(qū)別綜上所述,心理博弈論與傳統(tǒng)博弈論的主要區(qū)別在于:首先,玩家不僅會追求自我利益最大化,而且會實現(xiàn)一定的社會目標;其次,玩家不具有共同知識,玩家并不全都善于推理,并知曉他人的行動;最后,博弈的支付來自潛在的物質(zhì)支付和心理支付,即玩家的收益包括物質(zhì)收益,以及由信念導致的心理效用(GPS,1989;Rabin,1993)。因此,在傳統(tǒng)博弈論中,無法將基于信念的情感加入模型中,如報復的快感和互惠;但是,在心理博弈論中,博弈支付取決于信念層級,信念層級會影響偏好追求。因此,心理博弈論可用圖1.2表示,在博弈的三要素(參與人、物質(zhì)收益、行動)的基礎上,加入傳統(tǒng)博弈論中無法探討的信念與偏好異質(zhì)性,以及心理效用,心理博弈論認為這正是玩家偏離均衡的不可忽視的原因。關于信念和偏好的關系,本文將進一步探討。圖1.2心理博弈論邏輯示意圖1.3蜈蚣博弈變式與均衡實現(xiàn)Rosenthal在構建蜈蚣博弈時,為了數(shù)理的簡潔性和模型的代表性,認為“在建模時,不需要將現(xiàn)實的各個方面都考慮在內(nèi),這會使模型過于復雜”。相反地,如果要將該模型應用在實驗室中,則應該使其盡可能接近生活情境。因此,研究者們對博弈范式進行改進和完善,并且不同變式產(chǎn)生了不同結(jié)果,影響了均衡的

蜈蚣,范式


閩南師范大學教育學碩士學位論文18節(jié)點×起點不一致),起點組(8節(jié)點×起點一致)。長度組和起點組分別與對照組比較,得出長度和起點效應。2.2.3實驗材料研究一采用Rosenthal(1981)提出的蜈蚣博弈范式,同時參考Krockow(2018)的設置。本研究最終的蜈蚣博弈范式展開型表征見圖2.1,圖中,圓形指玩家A做選擇的節(jié)點,六邊形指玩家B做選擇的節(jié)點。圖形下方的數(shù)字指每一節(jié)點(Node)雙方收益,上方是玩家A的收益,下方是玩家B的收益。最右側(cè)收益指自然終結(jié)后的雙方收益。圖2.1研究一蜈蚣博弈范式展開型表征如圖所示,博弈規(guī)則是:合作時,自己付出成本3,對方收益增加7。計算可得,每次合作,雙方總收益增加4。根據(jù)實驗設計,博弈的具體設置如下:(1)信息情境:每個玩家均要先后進行兩種信息情境的博弈。完全信息情境是雙方玩家能看見自己和對方的全部收益,不完全信息情境是玩家僅知道步數(shù)和收益變動規(guī)則,但只能看見過去和當下決策時的收益,下一階段的收益的當下決策之后彩繪呈現(xiàn)。即玩家每次決策時僅能看到當下合作或不合作的成本和收益,而看不到未來的收益。(2)長度:博弈的階段數(shù),即玩家A和玩家B的總節(jié)點數(shù),如圖2.1中所示是8階段博弈,即雙方共有8次合作機會,各4次;而20階段博弈則共有20次合作機會。(3)起點:博弈的起始收益,起點不一致條件為(4,0),起點一致條件為(0,0)。起始收益的一致與否,會影響往后的收益變化,具體如下:P=0..347)。

【參考文獻】:
期刊論文
[1]心理學常用效應量的選用與分析[J]. 鄭昊敏,溫忠麟,吳艷.  心理科學進展. 2011(12)



本文編號:2895206

資料下載
論文發(fā)表

本文鏈接:http://www.lk138.cn/shoufeilunwen/benkebiyelunwen/2895206.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶10add***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com