中国韩国日本在线观看免费,A级尤物一区,日韩精品一二三区无码,欧美日韩少妇色

當(dāng)前位置:主頁(yè) > 科技論文 > 自動(dòng)化論文 >

基于精英策略的改進(jìn)狼群算法在城市公交路線問(wèn)題中的研究

發(fā)布時(shí)間:2018-06-18 08:44

  本文選題:城市公交路線問(wèn)題 + 群智能。 參考:《吉林大學(xué)》2017年碩士論文


【摘要】:隨著城市化的發(fā)展,城市人口和車輛也越來(lái)越多,不管在世界的哪個(gè)城市,交通堵塞現(xiàn)象發(fā)生的都越來(lái)越頻繁。擁擠的交通給人們生活帶來(lái)很多不便,如人們?cè)诼飞匣ㄙM(fèi)的時(shí)間增多、交通事故發(fā)生的幾率增大,大氣污染越發(fā)嚴(yán)重等。所以各個(gè)城市均亟需一個(gè)可以給人們生活帶來(lái)便利的高效交通系統(tǒng),同時(shí)設(shè)計(jì)一個(gè)高效的公交路線對(duì)于運(yùn)營(yíng)商和當(dāng)?shù)卣畞?lái)說(shuō)也是一件具有現(xiàn)實(shí)意義的事情。但是城市公交路線設(shè)計(jì)問(wèn)題是一個(gè)很難求得最優(yōu)解的NP難問(wèn)題,同時(shí)也是運(yùn)籌學(xué)領(lǐng)域和組合優(yōu)化領(lǐng)域的熱點(diǎn)研究問(wèn)題,具有很強(qiáng)的現(xiàn)實(shí)研究意義。城市公交路線設(shè)計(jì)問(wèn)題在一定程度上可以抽象為經(jīng)典的組合優(yōu)化問(wèn)題-旅行商問(wèn)題(TSP),所以近年來(lái)許多研究者紛紛利用求解TSP問(wèn)題的方法,如群智能優(yōu)化算法,對(duì)城市公交路線設(shè)計(jì)問(wèn)題進(jìn)行求解。狼群算法作為一種模擬狼群捕食行為的新興群智能優(yōu)化算法,具有尋優(yōu)精度高,收斂速度快和魯棒性強(qiáng)等優(yōu)點(diǎn),所以一經(jīng)提出便受到眾多研究者的關(guān)注。但是狼群算法也存在一些自身的缺陷,如算法復(fù)雜,參數(shù)過(guò)多等。本文主要對(duì)狼群算法進(jìn)行了改進(jìn),簡(jiǎn)化了狼群算法的流程和控制參數(shù)從而提出了一種基于精英策略的改進(jìn)狼群算法,并利用該算法對(duì)經(jīng)典組合優(yōu)化問(wèn)題TSP問(wèn)題進(jìn)行了求解。然后在認(rèn)真研究城市公交路線設(shè)計(jì)問(wèn)題之后提出了更關(guān)注乘客乘車感受的人性化模型,并將改進(jìn)的狼群算法應(yīng)用于城市公交路線設(shè)計(jì)優(yōu)化問(wèn)題中。本文的主要研究工作概述如下:1、針對(duì)狼群算法過(guò)程復(fù)雜難以理解和控制參數(shù)過(guò)多等缺點(diǎn),本文將狼群算法的召喚行為和圍攻行為抽象為一種聚集行為,因?yàn)檫@兩種行為本質(zhì)上都是讓狼群中的其他個(gè)體向最優(yōu)個(gè)體靠攏。這樣不僅簡(jiǎn)化了原始狼群算法的過(guò)程而且還去掉了狼群算法中的圍攻步長(zhǎng)和奔襲步長(zhǎng)等參數(shù),減少了算法的控制參數(shù)。2、利用改進(jìn)的狼群算法求解TSP問(wèn)題,在求解過(guò)程中本文提出了一種新的局部?jī)?yōu)化算子即聚集優(yōu)化算子。該算子是基于2-opt算子實(shí)現(xiàn)的,并在狼群的聚集行為中對(duì)解序列進(jìn)行優(yōu)化,而在狼群的游走行為中主要通過(guò)2-opt算子對(duì)解序列進(jìn)行優(yōu)化。為了證明該算法在求解TSP問(wèn)題中的有效性,本文對(duì)TSPLIB庫(kù)中的12個(gè)數(shù)據(jù)集進(jìn)行了仿真實(shí)驗(yàn),并將實(shí)驗(yàn)結(jié)果與文獻(xiàn)中的其他8種算法進(jìn)行對(duì)比。3、提出了一種更加關(guān)注乘客乘車感受的城市公交路線設(shè)計(jì)模型,該模型不僅考慮了乘客的乘車時(shí)間、轉(zhuǎn)車時(shí)間、轉(zhuǎn)車次數(shù)還考慮了轉(zhuǎn)乘給乘客帶來(lái)的煩感。針對(duì)該模型本文設(shè)計(jì)了利用改進(jìn)狼群算法求解城市公交路線設(shè)計(jì)問(wèn)題的具體實(shí)現(xiàn)方法,主要包括路線初始化、狼群算法的游走行為和聚集行為。最后本文在Mandl交通網(wǎng)絡(luò)上進(jìn)行了仿真實(shí)驗(yàn),并分別對(duì)4條路線、6條路線、7條路線和8條路線的情況進(jìn)行了討論,并將實(shí)驗(yàn)結(jié)果與文獻(xiàn)中的其他13種算法進(jìn)行了對(duì)比,結(jié)果證明了算法的可行性和有效性。
[Abstract]:With the development of urbanization, there are more and more urban population and vehicles, no matter which city in the world, traffic jams occur more and more frequently. The crowded traffic brings a lot of inconvenience to people's life, such as the increase of time spent on the road, the increase of the probability of traffic accidents, the more serious the air pollution and so on. Therefore, every city needs an efficient transportation system which can bring convenience to people's life, and it is also of practical significance to design an efficient bus route for operators and local governments. However, the problem of urban bus route design is a NP-hard problem which is difficult to find the optimal solution, and it is also a hot research problem in the field of operational research and combinatorial optimization, which has a strong practical significance. To some extent, the urban bus route design problem can be abstracted as a classical combinatorial optimization problem-traveling salesman problem (TSPP). So in recent years, many researchers have used methods to solve tsp, such as swarm intelligence optimization algorithm. The problem of urban bus route design is solved. As a new intelligent optimization algorithm for simulating predation behavior of wolves, wolf swarm algorithm has many advantages, such as high precision, fast convergence and strong robustness, so it has attracted many researchers' attention once it is proposed. But the wolf swarm algorithm also has some defects, such as complex algorithm, too many parameters and so on. In this paper, we improve the wolf swarm algorithm, simplify the flow and control parameters of the algorithm, and then propose an improved wolf swarm algorithm based on elitist strategy, and use this algorithm to solve the tsp problem of the classical combinatorial optimization problem. Then the humanized model of paying more attention to the passenger's experience is put forward after studying the problem of urban bus route design seriously, and the improved wolf swarm algorithm is applied to the optimization problem of urban bus route design. The main research work of this paper is summarized as follows: 1. In view of the complexity of the wolf swarm algorithm and the complexity of control parameters, this paper abstracts the call behavior and besieging behavior of the wolf swarm algorithm as a kind of aggregation behavior. Because both actions essentially bring the rest of the pack closer to the optimal individual. This not only simplifies the process of the original wolf swarm algorithm, but also removes the parameters such as the besieged step size and the running step size of the wolf swarm algorithm, reduces the control parameter of the algorithm, and uses the improved wolf swarm algorithm to solve the tsp problem. In this paper, a new local optimization operator, aggregative optimization operator, is proposed. This operator is based on the 2-opt operator and optimizes the solution sequence in the aggregation behavior of the wolves, while the 2-opt operator is used to optimize the solution sequence in the walk behavior of the wolves. In order to prove the effectiveness of the algorithm in solving tsp problem, this paper makes a simulation experiment on 12 datasets in TSPLIB database. By comparing the experimental results with the other eight algorithms in the literature, a new urban bus route design model is proposed, which not only considers the passenger's travel time and transit time, but also puts forward a city bus route design model, which pays more attention to the passenger's experience. The number of transfers also takes into account the annoyance of passengers. According to the model, this paper designs a method to solve the problem of urban bus route design using improved wolf swarm algorithm, which mainly includes route initialization, walk-away behavior and aggregation behavior of wolf swarm algorithm. Finally, the simulation experiments are carried out on Mandl traffic network, and the cases of 4 routes, 6 routes, 7 routes and 8 routes are discussed, and the experimental results are compared with the other 13 algorithms in the literature. The results show that the algorithm is feasible and effective.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:U491.17;TP18

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 潘淑平;孔德兵;丘孟春;孟召梅;;公交路線選擇模型及算法[J];吉林化工學(xué)院學(xué)報(bào);2009年04期

2 閆繼濤;李俊強(qiáng);邵國(guó)金;;城市公交路線網(wǎng)絡(luò)優(yōu)化[J];計(jì)算機(jī)測(cè)量與控制;2010年07期

3 趙毅;鐘聲;;基于遺傳算法的城市公交路線優(yōu)化問(wèn)題[J];計(jì)算機(jī)工程與科學(xué);2012年09期

4 ;在城市中穿行[J];數(shù)學(xué)大王(3-6年級(jí)適用);2011年Z2期

5 詹德斌;;韓國(guó)開(kāi)通周末公交[J];廣西城鎮(zhèn)建設(shè);2007年02期

6 金孟合;王慧;;基于蟻群算法的公交路線走向模型及其求解[J];江南大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年02期

7 王玲;;蘇州將引進(jìn)混合動(dòng)力新能源公交車[J];人民公交;2010年01期

8 任天;;韓國(guó)推出新型無(wú)線充電公交車[J];科學(xué)大觀園;2013年17期

9 崔艷鷺;蔣超猛;陸鈞成;;成都市三環(huán)線——繞城高速西北區(qū)域公交路線的設(shè)計(jì)[J];硅谷;2011年14期

10 華少君;體驗(yàn)公交[J];今日中國(guó)(中文版);2003年10期

相關(guān)會(huì)議論文 前1條

1 戴技才;;基于智能算法的立體公交路線優(yōu)化[A];地理學(xué)核心問(wèn)題與主線——中國(guó)地理學(xué)會(huì)2011年學(xué)術(shù)年會(huì)暨中國(guó)科學(xué)院新疆生態(tài)與地理研究所建所五十年慶典論文摘要集[C];2011年

相關(guān)重要報(bào)紙文章 前8條

1 楊波 韓洪杰;劉紅英:建立學(xué)生公交路線[N];青島日?qǐng)?bào);2007年

2 記者 王世甫;我市城區(qū)公交路線將重新規(guī)劃[N];通遼日?qǐng)?bào);2009年

3 曉琳;文屏路公交車有望年內(nèi)開(kāi)行[N];廈門日?qǐng)?bào);2006年

4 記者 戴嵐嵐;漳州市區(qū)公交路線年內(nèi)實(shí)現(xiàn)智能調(diào)度[N];閩南日?qǐng)?bào);2013年

5 文宇;想方設(shè)法破瓶頸 疏通道路天地寬[N];綿陽(yáng)日?qǐng)?bào);2008年

6 記者 胡麗霞;市政府召開(kāi)秦州城區(qū)道路交通疏通協(xié)調(diào)會(huì)[N];天水日?qǐng)?bào);2009年

7 本報(bào)記者 李佳祺;謝亮:愿做北京“活地圖”[N];人民日?qǐng)?bào);2005年

8 本報(bào)駐渥太華記者 趙青邋楊士龍;加拿大的“斗雪之道”[N];經(jīng)濟(jì)參考報(bào);2008年

相關(guān)碩士學(xué)位論文 前3條

1 黃子富;城市軌道交通的接運(yùn)公交路線與運(yùn)行時(shí)刻表優(yōu)化研究[D];重慶交通大學(xué);2015年

2 梁寧;城市夜間公交線路規(guī)劃研究[D];哈爾濱工業(yè)大學(xué);2016年

3 吳蕊蕊;基于精英策略的改進(jìn)狼群算法在城市公交路線問(wèn)題中的研究[D];吉林大學(xué);2017年

,

本文編號(hào):2034876

資料下載
論文發(fā)表

本文鏈接:http://www.lk138.cn/kejilunwen/zidonghuakongzhilunwen/2034876.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶8d410***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com