基于時(shí)序關(guān)聯(lián)規(guī)則挖掘的交通擁堵預(yù)測技術(shù)研究
[Abstract]:At present, the process of urban modernization in our country is advancing, but the problem of traffic congestion is becoming more and more obvious, and the traffic jam has become one of the serious problems in the large and medium-sized cities. The harmfulness of urban traffic congestion mainly includes two aspects: one is the time delay and energy waste caused by the traffic jam, and brings great economic loss to the society. According to the data from the experts of the Chinese Academy of Sciences, the economic loss caused by the traffic congestion of the city is about 1 billion yuan a day. Secondly, when the vehicle speed is too low, the pollution degree of the automobile exhaust is greatly increased, and meanwhile, a large amount of noise is generated, so that the air quality and the urban environmental quality are greatly reduced, and further serious harm to the physical and mental health of the citizen is caused, and the living standard of the citizen is reduced. Therefore, the effective prediction of complex traffic conditions is an important problem to be solved at present. In recent years, more and more scholars have begun to study the intelligent transportation system, and put forward a variety of traffic jam prediction methods. The common traffic congestion prediction method is mainly based on various mathematical models, and most of the traffic jam prediction methods are only predicted at a single time of a single road. Due to the complex and changeable nature of the traffic system, the parameters often taken into account are not comprehensive, and the timing of the traffic jam events is not taken into account, and the actual situation cannot be well adapted. In the traffic system, the traffic jam of each road section often follows a certain causal relationship, while taking into account the timing of the traffic jam event, this paper proposes a traffic jam prediction method based on time-series association rule mining, which first uses the genetic algorithm to mine the time-series association rules, The correlation rules are used as data samples to construct a classifier so as to achieve the purpose of predicting the traffic jam. The method adopts the idea of an evolutionary algorithm, effectively avoids the defect that the traditional method needs to determine the excessive parameters, the algorithm is more close to the actual living condition, the traffic jam can be effectively predicted, the traffic pressure can be relieved in time, the traffic congestion rate is reduced, the road smoothness is improved, And provides a reference basis for ensuring the high-efficiency and fast travel.
【學(xué)位授予單位】:沈陽理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:U491.14;TP311.13
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 胡啟洲;劉英舜;郭唐儀;;城市交通擁堵態(tài)勢監(jiān)控的時(shí)空分布形態(tài)識別模型[J];交通運(yùn)輸系統(tǒng)工程與信息;2012年03期
2 李春英;湯志康;曹元大;;多分類器組合的交通擁堵預(yù)測模型研究[J];計(jì)算機(jī)工程與設(shè)計(jì);2010年23期
3 榮岡;劉進(jìn)鋒;顧海杰;;數(shù)據(jù)庫中動態(tài)關(guān)聯(lián)規(guī)則的挖掘[J];控制理論與應(yīng)用;2007年01期
4 陳濤;陳森發(fā);;道路交通無序擁擠控制模型的研究[J];公路交通科技;2006年11期
5 吳兵;李林波;;交通擁擠的進(jìn)化動態(tài)分析[J];中國公路學(xué)報(bào);2006年03期
6 莊斌;楊曉光;李克平;;道路交通擁擠事件判別準(zhǔn)則與檢測算法[J];中國公路學(xué)報(bào);2006年03期
7 雷勝;;城市交通流量智能組合預(yù)測方法研究[J];西華大學(xué)學(xué)報(bào)(自然科學(xué)版);2006年02期
8 李碩;高速公路常發(fā)性交通擁擠路段實(shí)時(shí)判定與跟蹤研究[J];中南公路工程;2005年01期
9 戴紅;基于模糊模式識別的城市道路交通狀態(tài)檢測算法[J];吉林工程技術(shù)師范學(xué)院學(xué)報(bào);2005年03期
10 楊兆升,楊慶芳,馮金巧;基于模糊綜合推理的道路交通事件識別算法[J];公路交通科技;2003年04期
相關(guān)會議論文 前1條
1 高晗;裴玉龍;;基于小波包變換的道路交通擁擠事件檢測方法[A];2007年中國智能自動化會議論文集[C];2007年
相關(guān)博士學(xué)位論文 前1條
1 馮金巧;城市道路交通擁擠預(yù)測關(guān)鍵技術(shù)研究[D];吉林大學(xué);2008年
相關(guān)碩士學(xué)位論文 前3條
1 黃國浪;城市交通擁堵的識別與預(yù)測[D];長安大學(xué);2014年
2 屈健;城市主干道交通擁堵預(yù)測方法研究[D];西南交通大學(xué);2012年
3 王江鋒;高速公路交通擁擠狀態(tài)自動識別方法研究[D];吉林大學(xué);2004年
,本文編號:2508018
本文鏈接:http://www.lk138.cn/kejilunwen/daoluqiaoliang/2508018.html