基于VaR方法對我國可轉債市場風險的實證研究
本文關鍵詞: 可轉換債券 GARCH族模型 VaR 出處:《首都經(jīng)濟貿(mào)易大學》2017年碩士論文 論文類型:學位論文
【摘要】:可轉換公司債券以其兼具債性和股性的特殊結構優(yōu)勢越來越受到投資者歡迎,“向下債券保底,向上收益可期”的美譽也被市場中絕大多數(shù)的投資者所認可。然而,這種特殊的結構也使得可轉債面臨諸多復雜的風險因素,這些風險相互影響進而使得可轉債的風險度量工作難度加大;诖,本文以我國可轉債市場為研究對象,利用市場的日交易數(shù)據(jù)和數(shù)學模型探索我國可轉債市場的風險度量模型,在此基礎上試圖探尋我國可轉債市場的總體風險水平,并對可轉債和可交換債的風險特點進行研究。本論文共分為六章,前兩章在介紹本文研究背景和意義的基礎上利用收集到的數(shù)據(jù)對我國可轉債的一級和二級市場特點進行總結,分析了可轉債投資所面臨的復雜投資風險并對重點風險進行重點介紹,明確了可轉債風險度量工作的重要意義。第三章引入VaR模型,對VaR的不同計算方法進行綜述并最終決定利用參數(shù)法來測度我國可轉債的風險水平。同時引入基于不同分布的GARCH族模型,以更加精確的模擬可轉債市場波動路徑。第四章以我國中證轉債指數(shù)2004年1月2日至2016年12月30日之間共計3158交易日的收盤數(shù)據(jù)為樣本,在數(shù)據(jù)統(tǒng)計檢驗的基礎上利用基于GARCH族模型的參數(shù)法測度VaR,并進行回測檢驗。最終發(fā)現(xiàn)基于t分布下GARCH族模型均會對市場風險高估,基于正態(tài)分布和GED分布下三種模型計算結果相近,除GED分布下EGARCH(2,2)模型的預測結果略高于5%之外,其他模型均能夠較好的預測中證轉債的市場風險。其中,從風險控制與管理角度,GED分布下的TGARCH模型預測效果最優(yōu),能夠達到最優(yōu)的的風險預測效果。第五章利用兩組相同評級的可轉債和可交換債數(shù)據(jù)嘗試分析二者風險水平差異,實證結果證明可轉債的總體風險水平要小于可交換債,因此投資可交換債更要對風險進行嚴格管控。最后在全文的研究基礎上,本文進行系統(tǒng)總結并提出文章研究的不足之處。
[Abstract]:Convertible corporate bonds are becoming more and more popular among investors because of their special structural advantages of both debt and stock. The reputation of "keeping the bottom down and earning up" is also recognized by the vast majority of investors in the market. This special structure also makes convertible bonds face a lot of complex risk factors, which influence each other and make it more difficult to measure the risks of convertible bonds. Based on this, this paper takes China's convertible bond market as the research object. Based on the daily transaction data and mathematical model of the market, the paper explores the risk measurement model of China's convertible bond market, and then attempts to explore the overall risk level of China's convertible bond market. This paper is divided into six chapters. The first two chapters summarize the characteristics of the primary and secondary markets of China's convertible bonds on the basis of the background and significance of the research. This paper analyzes the complex investment risks faced by convertible bond investment, introduces the key risks, and clarifies the significance of the risk measurement of convertible bonds. Chapter three introduces the VaR model. This paper summarizes the different calculation methods of VaR and finally decides to use the parameter method to measure the risk level of convertible bonds in China. At the same time, the GARCH family model based on different distributions is introduced. Using a more accurate simulation of the volatility path in the convertible bond market. Chapter 4th is based on the closing data of China's China Securities Exchange Index from January 2nd 2004 to December 30th 2016 for a total of 3,158 trading days. On the basis of statistical test of data, the parameter method based on GARCH family model is used to measure VaR, and the back test is carried out. Finally, it is found that the GARCH family model based on t distribution will overestimate the market risk. Based on normal distribution and GED distribution, the calculation results of the three models are similar. Except for the GED distribution, the prediction results of EGARCHX 2 + 2) model are higher than 5%, and all the other models can better predict the market risk of securities to bonds. From the point of view of risk control and management, the TGARCH model under GED distribution has the best prediction effect and can achieve the optimal risk forecasting effect. Chapter 5th tries to analyze the difference of risk level between the two groups of convertible and exchangeable debt data with the same rating. The empirical results show that the overall risk level of convertible bonds is lower than that of exchangeable bonds, so the investment convertible bonds should be strictly controlled. Finally, on the basis of the research of the full text, this paper makes a systematic summary and puts forward the deficiencies of this paper.
【學位授予單位】:首都經(jīng)濟貿(mào)易大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:F832.51
【參考文獻】
相關期刊論文 前10條
1 陽李;;我國可轉換債券實際樣態(tài)探析——基于我國可轉換債券的實證分析(1992~2014)[J];北方經(jīng)貿(mào);2015年01期
2 林雨;黃冬玲;幸偉;;基于ARCH模型對萬科A股票收益率波動實證研究[J];會計之友;2014年08期
3 羅陽;楊桂元;;基于GARCH類模型的上證股市波動性研究[J];統(tǒng)計與決策;2013年12期
4 陶偉;;基于GARCH族模型的VaR與CVaR值的實證與應用[J];統(tǒng)計與決策;2012年09期
5 吳雅亭;;基于ARCH族模型的股票日收益率分析——以張江高科股票為例[J];財會通訊;2011年20期
6 魏宇;溫曉倩;賴曉東;;金融市場風險測度方法研究評述[J];中國地質(zhì)大學學報(社會科學版);2010年04期
7 姜全;劉孟;;HS300指數(shù)收益波動性及VaR度量研究[J];金融經(jīng)濟;2008年08期
8 趙進文;王倩;;上證180指數(shù)的GARCH族模型仿真研究——對上證300指數(shù)的間接實證建模分析[J];財經(jīng)問題研究;2008年03期
9 趙樹然;任培民;;極值理論在高頻數(shù)據(jù)中的VaR和CVaR風險價值研究[J];運籌與管理;2007年06期
10 楊立洪;徐黃瑋;曹顯兵;;可轉換債券風險測度的新方法——GAVaR模型[J];數(shù)學的實踐與認識;2007年11期
相關碩士學位論文 前5條
1 葛敏霞;基于GARCH族模型的VaR方法計算在證券市場的實證分析[D];湖北工業(yè)大學;2016年
2 田原s,
本文編號:1496561
本文鏈接:http://www.lk138.cn/jingjilunwen/huobiyinxinglunwen/1496561.html