帶違約風險跳—擴散市場下的期權定價及性質
發(fā)布時間:2018-01-14 22:15
本文關鍵詞:帶違約風險跳—擴散市場下的期權定價及性質 出處:《中國科學技術大學》2017年碩士論文 論文類型:學位論文
更多相關文章: 保凸性 偏微分方程 跳-擴散 跳至違約模型 信用風險 鞅 Black-Scholes公式
【摘要】:本文首先總結帶違約風險簡單跳-擴散市場(跳躍強度為給定的函數情況)下的期權定價問題及價格公式,由期權價格遵循給定的拋物積分微分方程的事實,研究其價格的凸性和單調性。并給出保凸的條件。再利用保凸的性質來獲得期權價值分別關于模型中不同參數的單調性質,例如波動率,跳躍大小以及跳躍強度。然后研究更一般的跳-擴散市場下(跳躍強度為正的隨機過程),"跳至違約模型"中的期權定價問題并給出其價格為唯一經典解的條件。特別的,找到一個確切的條件使在違約邊界的期權價格與回收規(guī)則中的支付相符。最后本文總結了這種模型中的期權價格的空間凸性以及保凸與參數單調性的關系。
[Abstract]:In this paper, we first summarize the pricing problem and pricing formula of options in a simple jump-diffusion market with default risk (the jump intensity is a given function), and the fact that the option price follows a given parabolic integro-differential equation. In this paper, we study the price convexity and monotonicity, and give the condition of preserving convexity. Then we use the convexity property to obtain the monotone properties of the value of the option on different parameters in the model, such as volatility. Jump size and jump intensity. Then study the more general jump-diffusion market (jump intensity is a positive stochastic process). The option pricing problem in "jumping to default Model" and giving the condition that its price is the unique classical solution. An exact condition is found to match the option price at the default boundary with the payment in the return rule. Finally, this paper summarizes the spatial convexity of the option price in this model and the relationship between the guaranteed convexity and parametric monotonicity.
【學位授予單位】:中國科學技術大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:O211.6;F830.9
【相似文獻】
相關碩士學位論文 前1條
1 崔天宇;帶違約風險跳—擴散市場下的期權定價及性質[D];中國科學技術大學;2017年
,本文編號:1425536
本文鏈接:http://www.lk138.cn/jingjilunwen/huobiyinxinglunwen/1425536.html
教材專著