LBL精密定位理論方法研究及軟件系統(tǒng)研制
本文選題:長基線聲學定位系統(tǒng) + 海底基陣布設優(yōu)化; 參考:《武漢大學》2013年博士論文
【摘要】:水下定位技術為海洋開發(fā)和科學研究提供基礎保障作用,缺少空間定位的海洋屬性信息毫無價值。相對海面定位,水下定位技術研究起步相對較晚,尤其在高精度長基線LBL (Long Baseline)水下定位技術方法。與國外相比,我國雖開展了相關系統(tǒng)研究,但遠不及國外相對成熟的LBL系統(tǒng);受商業(yè)封鎖,少有相關技術輸入,目前我國的LBL技術研究尚停留在對國外昂貴的商業(yè)LBL系統(tǒng)及軟件的消化吸收階段,尚未形成完整的LBL精密跟蹤定位理論和方法體系,我國的水下高精度定位技術研究任重道遠。為此,論文在分析國內外LBL研究現(xiàn)狀的基礎上,通過研究其定位理論和方法,形成了一套相對完備的LBL高精度水下定位理論和方法體系,并研制了具有自主知識產權的LBL定位數(shù)據處理軟件原型系統(tǒng),填補了我國在該領域的空白,為我國新型LBL系統(tǒng)研制、海洋資源勘查、科學研究、精密工程等海洋開發(fā)和利用服務。 論文的主要研究內容如下: 1.LBL系統(tǒng)及工作原理 在分析LBL系統(tǒng)現(xiàn)狀的基礎上,總結給出了LBL系統(tǒng)組成及工作原理、提煉并系統(tǒng)的給出了LBL跟蹤定位作業(yè)流程及數(shù)據處理流程。 2.聲線修正、聲速剖面反演及聲速場構建 (1)基于聲波射線理論,研究給出了聲線修正算法,實現(xiàn)了聲線的快速跟蹤,降低了聲線跟蹤復雜度,顯著提高了計算效率。 (2)給出了一種采用歷史聲速剖面、附加水深約束,基于EOF的聲速剖面反演算法,解決了現(xiàn)場無實測聲速剖面情況下聲速的精確獲取問題。 (3)基于有限聲速剖面,提出了基于EOF系數(shù)空間曲面內插的局域聲速場構建方法,達到了優(yōu)于0.5m/s的建模精度,相對基于聲速剖面直接空間內插的傳統(tǒng)建模方法,具有較大優(yōu)勢。 3.海底基準傳遞及海底基陣網綜合數(shù)據處理方法研究 (1)研究了船體坐標系和地理坐標系關系,給出了二者間的轉換模型,實現(xiàn)了GNSS高精度定位解向船載收發(fā)器轉換,為三維坐標基準向海底基陣網傳遞以及海底和陸地測量基準的統(tǒng)一奠定了基礎。 (2)研究了海底基陣校準技術,提出了圓校準方法,證明并給出了圓半徑等于水深時校準精度最高的結論,無需顧及聲速變化即實現(xiàn)了厘米級陣元位置的精確確定以及海底基準的精確傳遞。 (3)研究了海底基陣網平差問題,給出了適合不同情況下的基陣網平差模型;跍y邊網,給出了基陣網三維無約束平差模型;基于已知水深,提出了基陣網二維平差模型及附有水深約束的基陣網三維平差模型;跍y邊網平差,引入圓校準絕對點位,給出了附加部分校準陣元絕對坐標的二維/三維平差方法和模型。以上研究實現(xiàn)了基陣網陣元相對/絕對點位的精確確定。 4.海底基陣陣形因子對LBL定位精度的影響 系統(tǒng)地研究了海底基陣網形、陣元高度差、基陣網精度對LBL跟蹤定位精度影響問題,認為基本網形為正四邊形時覆蓋面積折衷,但陣元點位精度最高,且能夠實現(xiàn)整個基陣網無縫拼接;各陣元布設在平坦、無遮擋海床上,對提高陣元點位精度有益;同時建議海床不平坦時,在溫躍層和季節(jié)躍變層布設陣元高度差應控制在10m以內,而深海聲道層和正梯度層應控制在50m以內。給出了滿足最佳定位精度下的基陣網邊長計算模型,并認為基陣陣元點位精度應高出跟蹤定位精度一個數(shù)量級。研究了LBL最佳走航跟蹤定位路徑問題,認為在正三邊形和正四邊形內、500m以淺水深下跟蹤定位時,目標投影點越接近陣元,定位精度越高;而500m以深時,越接近中心,定位精度越高。對于正五邊形和六邊形,上述水深可減小到200m。 5.LBL跟蹤定位模型 (1)針對不同測量定位情況,研究并給出了相應的定位模型。對于單一測距觀測值,給出了空間交會定位模型:具備壓力傳感器情況下,提出了平面交會定位思想和數(shù)據處理模型;對于具備部分水深值情況,給出了附有深度差約束的空間交會模型;聯(lián)合基陣網相對校準結果,給出了獨立坐標系下的空間交會定位模型;谶@些模型,給出了各定位方法的精度評估模型及誤差橢圓計算模型。 (2)對空間交會、平面交會、附有水深約束的空間交會及獨立坐標系下的空間交會四種定位方法進行了試驗及對比分析,給出了不同方法適用范圍,并認為空間交會法因陣元與收發(fā)器存在不對稱分布,易導致垂直解不穩(wěn)定,建議增加壓力傳感器,提出了基于深度差約束獲取高精度跟蹤定位解的方法。 (3)針對測區(qū)無聲速剖面或聲速誤差影響相對顯著問題,提出了一種差分定位方法,即根據相鄰測距值中聲速誤差影響的相關性,基于一次差(單差)實現(xiàn)精確定位方法,并給出了定位模型,顯著提高了跟蹤定位精度,并得到了實驗驗證。 (4)將INS及抗差Kalman濾波引入LBL跟蹤定位中,構建了濾波模型,實現(xiàn)了INS信息對LBL定位信息補充及相互檢校和修正,提高了LBL跟蹤定位精度和可靠性。 6.LBL定位數(shù)據處理軟件研制 基于LBL理論研究,結合軟件需求分析,搭建了軟件框架,研制了軟件系統(tǒng),形成了我國首套LBL綜合定位數(shù)據處理軟件。 7.試驗及數(shù)據處理分析 在松花湖水域開展了LBL定位試驗,并對試驗數(shù)據進行了處理和分析。與GPS RTK定位結果比較,其中湖盆基陣網精度達到了厘米級精度,基陣內跟蹤定位精度達到了分米級,基陣網外跟蹤定位精度達到了米級,均取得了令人滿意的定位結果,同時也驗證了論文研究給出的理論方法的正確性以及研制的軟件系統(tǒng)的可靠性。
[Abstract]:Underwater positioning technology provides a basic guarantee for marine development and scientific research, and the lack of spatial location of marine attribute information is of no value. Relative to sea level positioning, underwater positioning technology is relatively late, especially in high precision long baseline LBL (Long Baseline) underwater positioning technology. System research, but far less than the foreign relatively mature LBL system; under the commercial blockade, few related technology input, our country's LBL technology research is still in the foreign expensive commercial LBL system and software digestion and absorption stage, has not formed a complete LBL precision tracking and positioning theory and method system, the high precision underwater positioning of our country On the basis of analyzing the present situation of LBL research both at home and abroad, the paper has formed a set of relatively complete LBL high precision underwater positioning theory and method system, and developed a prototype system of LBL positioning data processing software with independent intellectual property right, which filled our country in this study on the basis of analyzing the present situation of domestic and foreign research. The blank of the field is for the development and utilization of new LBL system, marine resources exploration, scientific research and precision engineering.
The main contents of this paper are as follows:
1.LBL system and its working principle
Based on the analysis of the status of the LBL system, the composition and working principle of the LBL system are summarized, and the LBL tracking and positioning operation process and the data processing flow are given and systematically given.
2. sound line correction, sound velocity profile inversion and sound velocity field construction
(1) based on the theory of acoustic ray, the algorithm of acoustic line correction is given, which realizes the fast tracking of the sound line, reduces the complexity of the sound line tracking, and greatly improves the computational efficiency.
(2) a sound velocity profile inversion algorithm based on the historical sound velocity profile, additional depth constraint and EOF based sound velocity profile is presented, which solves the accurate acquisition of sound velocity in the scene without the field measured sound velocity profile.
(3) based on the finite sound velocity profile, a local acoustic velocity field construction method based on EOF coefficient space surface interpolation is proposed, which has achieved a better modeling accuracy than 0.5m/s, and has a relatively large advantage over the traditional modeling method based on direct space interpolation in the sound velocity profile.
3. data processing method for subsea datum transfer and seafloor array network
(1) the relationship between the ship's coordinate system and the geographic coordinate system is studied, and the conversion model between the two is given. The GNSS high precision positioning solution is converted to the ship carrier transceiver, which lays the foundation for the unification of the three-dimensional coordinate datum to the submarine base array network and the unification of the submarine and land measurement datum.
(2) the calibration technique of the submarine base array is studied, and the circle calibration method is proposed. The conclusion is that the circle radius is equal to the depth of the water depth, and the accurate determination of the position of the centimeter level array element and the accurate transfer of the base of the seabed are realized without the change of the sound velocity.
(3) the adjustment of submarine base array network is studied, and the array network adjustment model suitable for different conditions is given. Based on the edge measurement network, a three-dimensional unconstrained adjustment model of the matrix network is given. Based on the known water depth, the two-dimensional difference model of the matrix network and the three-dimensional adjustment model with the depth constraint are proposed. The absolute point is calibrated, and a two-dimensional / three-dimensional adjustment method and model for the absolute coordinates of the additional calibration array elements are given. The above studies have realized the exact determination of the relative / absolute point of the matrix array element.
4. influence of submarine array array factor on LBL positioning accuracy
The influence of the network shape, the height difference of the array element and the precision of the array network on the tracking and positioning accuracy of LBL is systematically studied. It is considered that the basic net shape is a positive quadrilateral with the compromise of the coverage area, but the point position of the array element is the highest and can realize the seamless stitching of the whole array network. At the same time, it is suggested that when the seabed is not flat, the height difference between the thermocline and the seasonal thermocline should be controlled within 10m, while the deep sea channel layer and the positive gradient layer should be controlled within the 50m. The calculation model of the array net length under the best positioning accuracy is given, and the point position accuracy of the base array element should be higher than the tracking precision. The optimal tracking location path of LBL is studied. It is considered that in the regular triangles and positive quadrangles, when the 500m is located in the shallow water depth, the closer the target projection point is to the array element, the higher the positioning precision is, and the closer the 500m is to the center, the higher the positioning precision. For the regular pentagon and hexagon, the above water depth can be reduced. To 200m.
5.LBL tracking and positioning model
(1) according to the situation of different measurement and positioning, the corresponding positioning model is studied and given. For the single range observation value, the space rendezvous positioning model is given. Under the condition of pressure sensor, the idea of plane intersection positioning and data processing model are put forward. For some water depth, the space with depth difference constraint is given. The rendezvous model, the relative calibration results of the joint array network, gives the spatial rendezvous model under the independent coordinate system. Based on these models, the accuracy evaluation model and the error ellipse calculation model of each positioning method are given.
(2) the space rendezvous, the plane rendezvous, the space rendezvous with the depth constraint and the space rendezvous under the independent coordinate system are tested and contrasted, and the applicable range of the different methods is given. It is considered that the space rendezvous method is unstable due to the existence of the asymmetric distribution of the array element and the transceiver, and it is suggested to increase the pressure. Based on depth difference constraint, a high-precision tracking and localization solution is proposed.
(3) in view of the relative significant problem of the sonic velocity profile or the sound velocity error in the measured area, a differential positioning method is proposed, which is based on the correlation of the sound velocity error in the adjacent range range and based on the single difference (single difference) to realize the precise positioning method, and the positioning model is given, and the tracking accuracy is greatly improved, and the experimental verification is obtained.
(4) the filtering model is constructed by introducing INS and Kalman filtering to LBL tracking and positioning. The INS information is added to the LBL positioning information and mutual correction and correction, and the accuracy and reliability of LBL tracking positioning is improved.
Development of 6.LBL positioning data processing software
Based on LBL theory and software requirement analysis, a software framework was developed, and a software system was developed to form the first LBL integrated positioning data processing software in China.
7. test and data processing analysis
The LBL positioning test was carried out in Songhua Lake water area, and the test data were processed and analyzed. Compared with the GPS RTK positioning results, the precision of the lake basin array network reached centimeter precision, the tracking positioning accuracy in the matrix reached a decimeter level, and the tracking positioning accuracy outside the array was reached to the meter level, and satisfactory positioning results were obtained. At the same time, the correctness of the theoretical method and the reliability of the developed software system are verified.
【學位授予單位】:武漢大學
【學位級別】:博士
【學位授予年份】:2013
【分類號】:TB56;U666.7
【參考文獻】
相關期刊論文 前10條
1 蔡艷輝;程鵬飛;李夕銀;;用卡爾曼濾波進行GPS動態(tài)定位[J];測繪通報;2006年07期
2 龔真春;陳安寧;李平;宋執(zhí)環(huán);;GPS動態(tài)定位中自適應卡爾曼濾波方法的應用研究[J];測繪通報;2006年07期
3 黃謨濤,翟國君,王瑞,歐陽永忠,管錚;海洋測量異常數(shù)據的檢測(英文)[J];測繪學報;1999年03期
4 黃謨濤,翟國君,歐陽永忠,劉雁春,陸秀平,王克平;多波束與單波束測深數(shù)據的融合處理技術[J];測繪學報;2001年04期
5 趙鋼;王冬梅;黃俊友;吳杰;;多波束與單波束測深技術在水下工程中的應用比較研究[J];長江科學院院報;2010年02期
6 楊宏;吳旭光;;卡爾曼濾波算法在多傳感器融合技術中的應用[J];彈箭與制導學報;2009年05期
7 馮守珍,吳永亭,唐秋華;超短基線聲學定位原理及其應用[J];海岸工程;2002年04期
8 闞光明;劉保華;王揆洋;張維岡;;基于多波束聲線傳播的聲速剖面反演法[J];海洋科學進展;2006年03期
9 唐俊峰;楊士莪;;由傳播時間反演海水中的聲速剖面[J];哈爾濱工程大學學報;2006年05期
10 丁繼勝;吳永亭;周興華;楊龍;;長江口海域聲速剖面特性及其對多波束勘測的影響[J];海洋通報;2006年03期
相關博士學位論文 前3條
1 孫萬卿;淺海水聲定位技術及應用研究[D];中國海洋大學;2007年
2 鄭翠娥;超短基線定位技術在水下潛器對接中的應用研究[D];哈爾濱工程大學;2008年
3 付進;長基線定位信號處理若干關鍵技術研究[D];哈爾濱工程大學;2007年
,本文編號:1878539
本文鏈接:http://lk138.cn/falvlunwen/zhishichanquanfa/1878539.html