中国韩国日本在线观看免费,A级尤物一区,日韩精品一二三区无码,欧美日韩少妇色

當(dāng)前位置:主頁(yè) > 醫(yī)學(xué)論文 > 泌尿論文 >

PKCζ與Ⅱa型組蛋白去乙酰化酶相互作用調(diào)節(jié)前列腺癌細(xì)胞Warburg效應(yīng)及其機(jī)制

發(fā)布時(shí)間:2018-09-08 12:42
【摘要】:一、研究背景代謝改變是腫瘤的重要特征之一,其與腫瘤的發(fā)生發(fā)展密切相關(guān)。腫瘤細(xì)胞無(wú)論在有氧或無(wú)氧條件下,均需通過(guò)糖酵解(glycolysis)途徑吸收葡萄糖產(chǎn)生能量,滿(mǎn)足快速生長(zhǎng)需求,腫瘤細(xì)胞的這一代謝特點(diǎn)是腫瘤細(xì)胞具有的普遍現(xiàn)象和規(guī)律,被稱(chēng)為Warburg效應(yīng)。Warburg效應(yīng)不僅限于糖酵解和三羧酸循環(huán)的改變,脂肪酸、谷氨酰胺、絲氨酸、一碳單位等諸多代謝通路在腫瘤細(xì)胞均發(fā)生了代謝重編程(metabolic reprogramming),而且有關(guān)代謝性疾病(如肥胖、糖尿病等)的研究也顯示與腫瘤的發(fā)生發(fā)展密切相關(guān)。因此,更進(jìn)一步研究Warburg效應(yīng)的機(jī)制及其與腫瘤發(fā)生發(fā)展的關(guān)系,不僅有助于揭示腫瘤代謝改變與腫瘤進(jìn)展的內(nèi)在關(guān)聯(lián),而且將為腫瘤的臨床診斷尋求高度特異性代謝標(biāo)志物及以腫瘤代謝為靶向治療的新策略提供新的視野和契機(jī)。腫瘤細(xì)胞所表現(xiàn)出的有氧糖酵解(aerobic glycolysis),即Warburg效應(yīng)使線(xiàn)粒體的氧化磷酸化(oxidative phosphorylation, OXPHOS)途徑減弱,而有氧糖酵解及磷酸戊糖(pentose phosphate pathway, PPP)形成核苷酸等代謝途徑增強(qiáng)。這種異常的糖代謝轉(zhuǎn)變促使腫瘤細(xì)胞具有選擇性生長(zhǎng)優(yōu)勢(shì),它不僅為快速增殖的腫瘤細(xì)胞提供能量(ATP)、生物大分子前體(氨基酸、核苷酸等)以及輔酶(Nicotinamide adenine dinucleotide phosphate NADPH),而且,腫瘤細(xì)胞通過(guò)Warburg效應(yīng)形成的腫瘤酸化的微環(huán)境有利于腫瘤細(xì)胞的生長(zhǎng)和浸潤(rùn)轉(zhuǎn)移,此外,腫瘤細(xì)胞通過(guò)線(xiàn)粒體氧化磷酸化向糖酵解的代謝轉(zhuǎn)變,減少活性氧(reactive oxygen species,ROS)的產(chǎn)生,從而減輕ROS對(duì)腫瘤細(xì)胞的毒性。正因如此,近年來(lái)學(xué)者們把腫瘤代謝異常與腫瘤自我增殖能力、凋亡抵抗、無(wú)限的復(fù)制潛能、對(duì)抗生長(zhǎng)信號(hào)的不敏感性、持續(xù)的血管生成能力、組織侵襲轉(zhuǎn)移能力和免疫監(jiān)控逃逸共同構(gòu)成了腫瘤新的八大特征性標(biāo)志。多種因素導(dǎo)致腫瘤細(xì)胞Warburg效應(yīng)的發(fā)生,主要有:腫瘤細(xì)胞中原癌基因的獲得性缺失或突變,抑癌基因的缺失等;腫瘤細(xì)胞中糖酵解通路中的關(guān)鍵酶的活性或表達(dá)發(fā)生改變;線(xiàn)粒體mtDNA突變引起呼吸鏈功能缺失或氧化磷酸化效率降低;適應(yīng)低氧微環(huán)境,腫瘤細(xì)胞中低氧誘導(dǎo)因子高表達(dá),激活下游多個(gè)腫瘤代謝尤其是糖酵解相關(guān)靶基因及乳酸分泌相關(guān)的轉(zhuǎn)運(yùn)蛋白的表達(dá)。盡管Warburg效應(yīng)是腫瘤最為重要的特征之一,但腫瘤細(xì)胞除了通過(guò)上述自身基因的突變及關(guān)鍵性的信號(hào)通路的激活以適應(yīng)腫瘤缺氧微環(huán)境促進(jìn)腫瘤的Warburg效應(yīng)外,與腫瘤發(fā)生及進(jìn)展密切相關(guān)的其他調(diào)控分子及關(guān)鍵信號(hào)通路在腫瘤Warburg效應(yīng)調(diào)控中的作用仍不清楚。PKC屬于一類(lèi)受酪氨酸激酶受體(Receptor Tyrosine kinase,RTK)和G-蛋白偶聯(lián)受體(G protein coupled receptor,GPCR)激活的絲氨酸/蘇氨酸家族的蛋白激酶,包括三個(gè)亞族,即Ca2+和DAG依賴(lài)的典型PKC(PKC-α,-β,-γ);DAG-依賴(lài)而Ca2+非依賴(lài)的PKC(PKC-δ,-ε,-η,-θ);DAG和Ca2+非依賴(lài)的不典型的PKC(PKC-ζ,-ι).PKC家族對(duì)細(xì)胞生長(zhǎng)代謝、分裂增殖、細(xì)胞骨架蛋白的重塑等方面有重要作用。PKCζ是PKC家族的其中一個(gè)非典型亞型,在整合細(xì)胞外信號(hào)刺激,參與調(diào)控細(xì)胞生長(zhǎng)、代謝、細(xì)胞極性等相關(guān)的關(guān)鍵信號(hào)傳導(dǎo)中起重要作用。有研究證明PKCζ可以促進(jìn)腫瘤的增殖、侵襲和轉(zhuǎn)移,而且,在葡萄糖供應(yīng)不足時(shí),PKCζ基因缺失能促進(jìn)腫瘤細(xì)胞代謝重編程。已有的研究表明,由組蛋白去乙;(HDACs)調(diào)控的表觀(guān)遺傳學(xué)改變?cè)谀[瘤的增殖、遷移、基因組的穩(wěn)定性、血管新生及腫瘤凋亡中扮演一個(gè)重要角色。它們主要由Class Ⅰ,ClassⅡ和ClassⅢ三型HDACs構(gòu)成。最近,有關(guān)HDACs在腫瘤代謝變化中的功能作用開(kāi)始受到人們的關(guān)注,但與腫瘤增殖及進(jìn)展密切相關(guān)的Class Ⅱ HDACs是否參與腫瘤代謝尤其是糖代謝的調(diào)控作用至今仍不清楚。二、研究目的本研究首次探討PKCζ和Ⅱa類(lèi)HDACs在前列腺癌細(xì)胞糖酵解的功能作用及其相互作用對(duì)糖代謝和相關(guān)基因表達(dá)及細(xì)胞生長(zhǎng)的影響,該研究不僅有助于深入了解PKCζ和Ⅱa類(lèi)HDACs在前列腺癌癌的生長(zhǎng)中的作用和分子機(jī)制,而且為進(jìn)一步發(fā)現(xiàn)新的調(diào)控腫瘤代謝靶點(diǎn)奠定基礎(chǔ)。三、研究方法本研究主要通過(guò)過(guò)表達(dá)(質(zhì)粒)或干擾(si RNA)的策略探討PKCζ或Ⅱ aHDACs在前列腺癌細(xì)胞中對(duì)有氧糖酵解途徑中間產(chǎn)物及終產(chǎn)物的調(diào)節(jié)作用及其對(duì)相關(guān)蛋白的表達(dá)調(diào)節(jié)作用和分子機(jī)制;通過(guò)免疫熒光染色、免疫共沉淀等方法證實(shí)PKCζ與Ⅱa HDACs在核內(nèi)的共定位以及相互作用,調(diào)節(jié)前列腺癌細(xì)胞有氧糖酵解進(jìn)而最終調(diào)節(jié)腫瘤細(xì)胞的生長(zhǎng)。四、研究結(jié)果1. PKCζ促進(jìn)前列腺癌細(xì)胞DU145的生長(zhǎng)及Warburg效應(yīng)的發(fā)生PKCζ的過(guò)表達(dá)促進(jìn)前列腺癌DU145細(xì)胞的生長(zhǎng)及葡萄糖的吸收和乳酸的分泌,相反,敲低前列腺癌細(xì)胞內(nèi)源性PKCζ的表達(dá)則明顯降低前列腺癌DU145細(xì)胞的生長(zhǎng)及葡萄糖的吸收和乳酸的分泌。2. PKCζ促進(jìn)前列腺癌細(xì)胞中Warburg效應(yīng)相關(guān)蛋白的表達(dá)通過(guò)Real time quantitative RT-PCR和Western blot檢測(cè)顯示,PKCζ的過(guò)表達(dá)促進(jìn)前列腺癌DU145細(xì)胞中糖酵解相關(guān)蛋白、葡萄糖及乳酸轉(zhuǎn)運(yùn)蛋白(HKⅡ、PFKP、MCT4、CD 147)的表達(dá),而敲低前列腺癌細(xì)胞內(nèi)源性PKCζ的表達(dá)則明顯降低前列腺癌DU145細(xì)胞中糖酵解相關(guān)蛋白、葡萄糖及乳酸轉(zhuǎn)運(yùn)蛋白(HKⅡ、PFKP、MCT4、CD 147)的表達(dá)。上述結(jié)果提示PKCζ可能通過(guò)調(diào)節(jié)前列腺癌細(xì)胞中糖酵解相關(guān)蛋白的表達(dá)而促進(jìn)Warburg效應(yīng)的發(fā)生及腫瘤細(xì)胞生長(zhǎng)。3.過(guò)表達(dá)Ⅱa型HDACs (HDAC4,5,7)降低前列腺癌DU145細(xì)胞的生長(zhǎng)及葡萄糖吸收和乳酸的分泌有研究證明,HDACs與細(xì)胞代謝之間存在著一個(gè)反饋循環(huán)效應(yīng),為了探討Ⅱa型HDACs (HDAC4,5,7)對(duì)腫瘤細(xì)胞生長(zhǎng)及糖酵解的影響,我們分別在前列腺癌DU145細(xì)胞中轉(zhuǎn)染HA-HDAC4,5,7,首先檢測(cè)其過(guò)表達(dá)對(duì)前列腺癌細(xì)胞生長(zhǎng)的影響,結(jié)果表明,過(guò)表達(dá)HA-HDAC4,5,7均能明顯降低DU145細(xì)胞的生長(zhǎng)及存活。而敲低內(nèi)源性HDAC7的表達(dá)則明顯促進(jìn)DU145細(xì)胞的生長(zhǎng),其次,在敲低內(nèi)源性HDAC7表達(dá)的DU145細(xì)胞中添加乳酸轉(zhuǎn)運(yùn)蛋白的抑制劑a-CHCA則拮抗內(nèi)源性HDAC7的敲低對(duì)細(xì)胞生長(zhǎng)的促進(jìn)作用。最后,我們進(jìn)一步檢測(cè)Ⅱa型HDACs對(duì)葡萄糖的吸收和乳酸分泌的影響,結(jié)果表明,過(guò)表達(dá)HA-HDAC4,5,7能以時(shí)間依賴(lài)地降低前列腺癌細(xì)胞DU145和PC-3M中葡萄糖吸收和乳酸的分泌。提示Ⅱa型HDACs可能通過(guò)負(fù)性調(diào)節(jié)糖酵解的發(fā)生而抑制腫瘤細(xì)胞的生長(zhǎng)。4.Ⅱa型HDACs的過(guò)表達(dá)降低前列腺癌DU145細(xì)胞中Warburg效應(yīng)相關(guān)蛋白的表達(dá)Real time quantitative RT-PCR顯示,前列腺癌DU145細(xì)胞中HA-HDAC4,5,7的過(guò)表達(dá)明顯降低前列腺癌細(xì)胞中糖酵解相關(guān)蛋白、葡萄糖及乳酸轉(zhuǎn)運(yùn)蛋白(HKⅡ、PFKP、MCT4、CD 147)的表達(dá),而且Western blot更顯示HA-HDAC4,5,7的過(guò)表達(dá)除了明顯降低上述糖酵解相關(guān)蛋白的表達(dá)外,也明顯降低糖酵解關(guān)鍵酶(LDHA,PDH)和缺氧誘導(dǎo)因子(HIF-la)的表達(dá)。5.PKC⒔與II a HDACs在核內(nèi)共定位且二者相互作用,并且敲低PKCζ的表達(dá)能夠明顯降低HDAC出核關(guān)鍵性位點(diǎn)的磷酸化水平免疫熒光染色顯示內(nèi)源性PKCζ可與Ⅱa型HDACs的HDAC4,5,7在核內(nèi)共定位,免疫共沉淀進(jìn)一步顯示HDAC4,5,7均能與PKCζ直接相互作用,此外,敲低PKCζ的表達(dá)能夠明顯降低HDAC出核關(guān)鍵性位點(diǎn)的磷酸化水平。提示PKCζ可能與HDAC4,5,7共同作用,通過(guò)調(diào)節(jié)Ⅱa HDACs的磷酸化出核,從而解除Ⅱa HDACs對(duì)糖酵解相關(guān)基因表達(dá)的抑制作用。6. HDAC7可拮抗PKCζ對(duì)DU145細(xì)胞生長(zhǎng)的促進(jìn)作用細(xì)胞生長(zhǎng)檢測(cè)表明,敲低內(nèi)源性PKCζ的表達(dá)能明顯抑制DU145細(xì)胞的生長(zhǎng),而敲低HDAC7的表達(dá)則明顯促進(jìn)DU145細(xì)胞的生長(zhǎng),si-HDAC7和si-PKCζ的共轉(zhuǎn)染進(jìn)一步顯示,敲低內(nèi)源性HDAC7的表達(dá)則可拮抗內(nèi)源性PKCζ的敲低對(duì)DU145細(xì)胞生長(zhǎng)的抑制作用。五、結(jié)論本研究結(jié)果表明PKCζ通過(guò)與Ⅱ a型HDACs相互作用,調(diào)節(jié)前列腺癌細(xì)胞Warburg效應(yīng)相關(guān)基因的表達(dá)及乳酸的分泌,從而促進(jìn)腫瘤細(xì)胞的生長(zhǎng),這一研究將為進(jìn)一步探討前列腺癌糖代謝改變與腫瘤生長(zhǎng)及進(jìn)展的內(nèi)在關(guān)聯(lián)奠定基礎(chǔ),并為前列腺癌的診斷和治療提供新的潛在靶點(diǎn)。
[Abstract]:1. Background Metabolism is one of the most important characteristics of cancer, which is closely related to the occurrence and development of tumor. Tumor cells absorb glucose to produce energy through glycolysis pathway in both aerobic and anaerobic conditions to meet the needs of rapid growth. The Warburg effect is not only limited to changes in glycolysis and tricarboxylic acid cycles, but also to metabolic reprogramming of fatty acids, glutamine, serine, and mono-carboxylic units in tumor cells. Therefore, further study on the mechanism of Warburg effect and its relationship with tumor development will not only help to reveal the intrinsic relationship between tumor metabolic changes and tumor progression, but also seek highly specific metabolic markers for clinical diagnosis and targeted treatment of tumor metabolism. New therapeutic strategies offer new insights and opportunities. The aerobic glycolysis (Warburg effect) shown by tumor cells weakens the oxidative phosphorylation (OXPHOS) pathway in mitochondria, while the metabolic pathways such as aerobic glycolysis and pentose phosphate pathway (PPP) to form nucleotides increase. Strong. This abnormal glycometabolic transformation promotes the selective growth of tumor cells. It not only provides energy (ATP), biological macromolecular precursors (amino acids, nucleotides, etc.) and coenzymes (Nicotinamide adenine dinucleotide phosphate NADPH) for rapidly proliferating tumor cells, but also forms tumor cells through Warburg effect. Acidified microenvironment is conducive to the growth, invasion and metastasis of tumor cells. In addition, the metabolic transformation of tumor cells from mitochondrial oxidative phosphorylation to glycolysis reduces the production of reactive oxygen species (ROS) and thus reduces the toxicity of ROS to tumor cells. Proliferation, apoptosis resistance, unlimited replication potential, insensitivity to growth signals, persistent angiogenesis, tissue invasion and metastasis, and immune surveillance and escape constitute the eight new characteristic markers of tumor. Acquired deletion or mutation, loss of tumor suppressor genes, changes in the activity or expression of key enzymes in the glycolysis pathway in tumor cells, loss of respiratory chain function or decreased oxidative phosphorylation due to mitochondrial mtDNA mutation, high expression of hypoxia-inducible factors in tumor cells, activation of downstream multiple tumors, and adaptation to hypoxia microenvironment Although Warburg effect is one of the most important characteristics of tumors, tumor cells adapt to the Warburg effect of hypoxic microenvironment by mutation of these genes and activation of key signaling pathways. The role of other regulatory molecules and key signaling pathways closely related to tumorigenesis and progression in the regulation of the Warburg effect is still unclear. PKC belongs to a family of serine/threonine proteins activated by Receptor Tyrosine kinase (RTK) and G-protein coupled receptor (GPCR). Kinases, including three subgroups, namely Ca2+ and DAG-dependent typical PKC (PKC-a, -beta, -gamma); DAG-dependent but Ca2+ independent PKC (PKC-delta, -e, -_, -theta); DAG and Ca2+ independent atypical PKC (PKC-_, -_). PKC family plays an important role in cell growth and metabolism, mitosis and proliferation, cytoskeleton protein remodeling. One of the atypical subtypes plays an important role in integrating extracellular signal stimuli and regulating key signaling pathways related to cell growth, metabolism and cell polarity. Programming. Previous studies have shown that epigenetic changes regulated by histone deacetylases (HDACs) play an important role in tumor proliferation, migration, genome stability, angiogenesis and tumor apoptosis. They are mainly composed of Class I, Class II and Class III HDACs. Recently, HDACs have been involved in tumor metabolism. However, it is still unclear whether Class II HDACs, which are closely related to tumor proliferation and progression, are involved in the regulation of tumor metabolism, especially glucose metabolism. This study not only helps to understand the role and molecular mechanism of PKC_and Class II a HDACs in the growth of prostate cancer, but also lays a foundation for further discovery of new targets for regulating tumor metabolism. 3. Research methods This study mainly through overexpression (plasmid) or interference. (si RNA) strategy to investigate the role of PKC_or II a HDACs in regulating the expression of intermediate and end products of aerobic glycolysis pathway and their molecular mechanisms in prostate cancer cells; the co-location and interaction of PKC_and II a HDACs in the nucleus were confirmed by immunofluorescence staining and immunoprecipitation PKC promotes the growth of prostate cancer cell DU145 and Warburg effect. Overexpression of PKC promotes the growth of prostate cancer cell DU145 and glucose uptake and lactic acid secretion. On the contrary, it knocks down prostate cancer cells. The expression of PKC_significantly decreased the growth, glucose uptake and lactic acid secretion of prostate cancer DU145 cells. 2. PKC_promoted the expression of Warburg effect-related proteins in prostate cancer cells. Real-time quantitative RT-PCR and Western blot analysis showed that the over-expression of PKC_promoted the glycolysis of prostate cancer DU145 cells. The expression of related proteins, glucose and lactate transporters (HK II, PFKP, MCT4, CD 147) was significantly decreased by knocking down the expression of endogenous PKC_in prostate cancer DU145 cells, while the expression of glucose and lactate transporters (HK II, PFKP, MCT4, CD 147) was significantly decreased by knocking down the expression of endogenous PKC_. Overexpression of type II a HDACs (HDAC4,5,7) reduces the growth, glucose uptake and lactic acid secretion of prostate cancer DU145 cells. Studies have shown that there is a feedback loop between HDACs and cell metabolism. The effects of type II a HDACs (HDAC4,5,7) on the growth and glycolysis of tumor cells were studied. HA-HDAC4,5,7 was transfected into prostate cancer DU145 cells. The results showed that overexpression of HA-HDAC4,5,7 significantly decreased the growth and survival of DU145 cells. In addition, lactate transporter inhibitor a-CHCA was added to knock down endogenous HDAC7 expression DU145 cells to antagonize the growth-promoting effect of endogenous HDAC7 knockdown. Finally, we further examined the effects of type II a HDACs on glucose uptake and lactate secretion. Expression of HA-HDAC4,5,7 in prostate cancer cells DU145 and PC-3M decreased glucose uptake and lactic acid secretion in a time-dependent manner, suggesting that type II a HDACs may inhibit tumor cell growth by negatively regulating glycolysis. 4. Overexpression of type II a HDACs decreased the expression of Warburg effect-related proteins in prostate cancer DU145 cells. L-time quantitative RT-PCR showed that the overexpression of HA-HDAC4,5,7 in prostate cancer DU145 cells significantly decreased the expression of glycolysis-related proteins, glucose and lactate transporters (HKII, PFKP, MCT4, CD 147) in prostate cancer DU145 cells, and Western blot showed that the overexpression of HA-HDAC4,5,7 in addition to significantly reducing the above-mentioned glycolysis-related proteins. PKC_and II a HDACs were co-localized in the nucleus and interacted with each other, and knocking down the expression of PKC_could significantly reduce the phosphorylation level of the nucleus key sites of HDAC. Immunofluorescence staining showed that endogenous PKC_could be associated with type II a HDACs. HDAC4,5,7 were co-localized in the nucleus. Immunocoprecipitation further showed that HDAC4,5,7 could interact directly with PKC. In addition, knocking down the expression of PKC could significantly reduce the phosphorylation level of the key sites of HDAC exocytosis. Inhibitory effect of HDAC7 on the expression of glycolysis-related genes.6.HDAC7 could antagonize the growth-promoting effect of PKC_on DU145 cells.The results showed that knocking down the expression of endogenous PKC_significantly inhibited the growth of DU145 cells, while knocking down the expression of HDAC7 significantly promoted the growth of DU145 cells. Tapping down the expression of endogenous HDAC7 may antagonize the inhibition of endogenous PKC_on the growth of DU145 cells. 5. Conclusion PKC_can regulate the expression of Warburg-related genes and the secretion of lactic acid in prostate cancer cells by interacting with type II a HDACs. This study will promote the growth of tumor cells. It lays a foundation for further study of the relationship between the changes of glucose metabolism and the growth and progression of prostate cancer, and provides a new potential target for the diagnosis and treatment of prostate cancer.
【學(xué)位授予單位】:南方醫(yī)科大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類(lèi)號(hào)】:R737.25

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 黃馬羊;宋濤;黎曉;;3'-大豆苷元磺酸鈉對(duì)前列腺癌細(xì)胞的影響[J];贛南醫(yī)學(xué)院學(xué)報(bào);2010年03期

2 歐陽(yáng)斌;張?jiān)?;科學(xué)家鑒定出前列腺癌細(xì)胞的來(lái)源[J];中華男科學(xué)雜志;2010年10期

3 衛(wèi)華;;前列腺癌細(xì)胞收集的改進(jìn)[J];中國(guó)醫(yī)療器械信息;2011年12期

4 麥鳳鳴,梁若斯,胡建波;前列腺癌細(xì)胞凋亡相關(guān)基因表達(dá)及其意義[J];廣州醫(yī)學(xué)院學(xué)報(bào);2002年02期

5 張星海,楊賢強(qiáng);茶多酚及兒茶素對(duì)前列腺癌細(xì)胞生長(zhǎng)的抑制作用[J];茶葉;2003年03期

6 王共先,劉偉鵬,汪泱,傅斌,黃學(xué)明,陳慶科,袁鏗,胡銀英;前列腺癌細(xì)胞的原代和傳代培養(yǎng)的研究[J];江西醫(yī)學(xué)檢驗(yàn);2004年01期

7 龍智,蔣先鎮(zhèn);外源性一氧化氮對(duì)前列腺癌細(xì)胞作用的研究[J];中國(guó)男科學(xué)雜志;2005年02期

8 田媛,秦璽,胡寶成,黃翠芬;抗前列腺癌細(xì)胞特異抗體庫(kù)的構(gòu)建及特異結(jié)合抗體的篩選[J];中國(guó)腫瘤生物治療雜志;2005年01期

9 張巖,劉賢錫,張冰,胡海燕,龔磊;鳥(niǎo)氨酸脫羧酶基因反義RNA對(duì)前列腺癌細(xì)胞生長(zhǎng)的抑制作用[J];中國(guó)生物化學(xué)與分子生物學(xué)報(bào);2005年01期

10 李璐;;藥用菌靈芝可切斷前列腺癌細(xì)胞的血液供應(yīng)[J];國(guó)外醫(yī)學(xué).藥學(xué)分冊(cè);2006年03期

相關(guān)會(huì)議論文 前10條

1 陸斌;趙善超;鄧鵬;姜勇;;晚期糖基化終末產(chǎn)物受體存在異常定位并能促進(jìn)前列腺癌細(xì)胞的增殖[A];中國(guó)病理生理學(xué)會(huì)受體、腫瘤和免疫專(zhuān)業(yè)委員會(huì)聯(lián)合學(xué)術(shù)會(huì)議論文匯編[C];2010年

2 趙善超;賈立永;鄭少斌;毛向明;杜躍軍;;晚期糖基化終產(chǎn)物受體在前列腺癌細(xì)胞中的表達(dá)[A];第十五屆全國(guó)泌尿外科學(xué)術(shù)會(huì)議論文集[C];2008年

3 杜俊華;姜昊文;關(guān)明;丁強(qiáng);;基因芯片篩查前列腺癌細(xì)胞系抗甲基化干預(yù)后的目標(biāo)基因[A];第十六屆全國(guó)泌尿外科學(xué)術(shù)會(huì)議論文集[C];2009年

4 呂家駒;高德軒;夏慶華;張輝;;丙戊酸對(duì)前列腺癌細(xì)胞裸鼠移植瘤生長(zhǎng)抑制的實(shí)驗(yàn)研究[A];2007年華東六省一市泌尿外科學(xué)術(shù)會(huì)議暨山東省泌尿外科年會(huì)論文匯編[C];2007年

5 黃海;杜濤;黃健;許可慰;尹心寶;林天歆;江春;韓金利;郭正輝;;高效抑制核因子κ-B的莖環(huán)RNA基因序列的獲得[A];第十五屆全國(guó)泌尿外科學(xué)術(shù)會(huì)議論文集[C];2008年

6 鄧勇;張煒飛;張成斌;林金明;;液相色譜串聯(lián)質(zhì)譜法定量檢測(cè)前列腺癌細(xì)胞肌氨酸代謝[A];中國(guó)化學(xué)會(huì)第29屆學(xué)術(shù)年會(huì)摘要集——第38分會(huì):質(zhì)譜分析[C];2014年

7 解杰;陳安民;郭風(fēng)勁;王建超;廖暉;柳昊;;前列腺癌細(xì)胞體外骨轉(zhuǎn)移立體模型的構(gòu)建[A];中華醫(yī)學(xué)會(huì)疼痛學(xué)分會(huì)第八屆年會(huì)暨CASP成立二十周年論文集[C];2009年

8 趙福軍;夏術(shù)階;;脂質(zhì)體介導(dǎo)靶向pPSMApromoter/enhancer-UPRT/5-FU自殺基因系統(tǒng)對(duì)前列腺癌細(xì)胞的作用研究[A];2007年華東六省一市泌尿外科學(xué)術(shù)會(huì)議暨山東省泌尿外科年會(huì)論文匯編[C];2007年

9 沈默;陶志華;周平;王彩虹;陳俐麗;;免疫磁珠法檢測(cè)外周血微轉(zhuǎn)移前列腺癌細(xì)胞的方法學(xué)探討[A];2007年浙江省醫(yī)學(xué)檢驗(yàn)學(xué)學(xué)術(shù)年會(huì)論文匯編[C];2007年

10 宮麗華;方偉崗;;人前列腺癌細(xì)胞表達(dá)的P2Y嘌呤受體亞型特性及功能研究[A];第四屆中國(guó)腫瘤學(xué)術(shù)大會(huì)暨第五屆海峽兩岸腫瘤學(xué)術(shù)會(huì)議論文集[C];2006年

相關(guān)重要報(bào)紙文章 前2條

1 田香;辣椒素能殺前列腺癌細(xì)胞[N];衛(wèi)生與生活報(bào);2007年

2 ;新方法可搜出隱藏的前列腺癌細(xì)胞[N];新華每日電訊;2006年

相關(guān)博士學(xué)位論文 前10條

1 田聆;前列腺癌細(xì)胞中的PTEN的多重miRNA調(diào)控研究[D];復(fù)旦大學(xué);2012年

2 劉永青;自噬在天然小分子化合物促進(jìn)前列腺癌細(xì)胞死亡中的作用及其機(jī)制研究[D];山東大學(xué);2015年

3 溫冬華;前列腺癌細(xì)胞SUMO化蛋白的發(fā)現(xiàn)和功能研究[D];上海交通大學(xué);2014年

4 陳勇;轉(zhuǎn)錄因子RUNX3對(duì)前列腺癌細(xì)胞惡性表型的影響[D];第四軍醫(yī)大學(xué);2015年

5 溫明新;UBE2T促進(jìn)前列腺癌細(xì)胞上皮間質(zhì)轉(zhuǎn)化及侵襲轉(zhuǎn)移的作用機(jī)制研究[D];山東大學(xué);2015年

6 李濤;BDNF/TrkB通路對(duì)前列腺癌細(xì)胞上皮向間質(zhì)轉(zhuǎn)化、遷移、侵襲、失巢凋亡的影響及分子機(jī)制的體外研究[D];華中科技大學(xué);2015年

7 楊俊;糖原合酶激酶3β調(diào)控前列腺癌細(xì)胞死亡的機(jī)制研究[D];華中科技大學(xué);2010年

8 龐博;前列腺癌細(xì)胞系分泌蛋白質(zhì)組比較及相關(guān)蛋白功能研究[D];中國(guó)人民解放軍軍事醫(yī)學(xué)科學(xué)院;2008年

9 郭瓊;miR-375及MTDH在前列腺癌細(xì)胞中的功能研究[D];中南大學(xué);2013年

10 蔣漢明;以蛋白酶體為靶點(diǎn)的地錢(qián)素M誘導(dǎo)前列腺癌細(xì)胞死亡的機(jī)制研究[D];山東大學(xué);2013年

相關(guān)碩士學(xué)位論文 前10條

1 劉瑩;~(131)Ⅰ標(biāo)記新型靶向FGF8分子探針的制備及其對(duì)前列腺癌細(xì)胞體外作用影響的實(shí)驗(yàn)研究[D];寧夏醫(yī)科大學(xué);2015年

2 翟紅運(yùn);胚胎干細(xì)胞分泌因子對(duì)前列腺癌細(xì)胞作用的研究[D];山東大學(xué);2015年

3 梅_g;miR-27a對(duì)前列腺癌細(xì)胞遷移和侵襲的影響[D];哈爾濱工業(yè)大學(xué);2015年

4 雷詠;二甲雙胍抑制前列腺癌細(xì)胞的遷移和侵襲并增加對(duì)紫杉醇敏感性的研究[D];廣西醫(yī)科大學(xué);2015年

5 張燾;MiR-101調(diào)控前列腺癌細(xì)胞CRMP4的表達(dá)及其機(jī)制的初步研究[D];南昌大學(xué)醫(yī)學(xué)院;2015年

6 唐乃玲;冷凍消融對(duì)前列腺癌細(xì)胞轉(zhuǎn)化生長(zhǎng)因子-β及smad通路影響的實(shí)驗(yàn)研究[D];天津醫(yī)科大學(xué);2015年

7 李婷婷;SP-1/3在前列腺癌細(xì)胞DU145和LNCaP中的表達(dá)水平及對(duì)PP2A-Aα的調(diào)控作用[D];湖南師范大學(xué);2015年

8 易明;AP-2α和Ets-1在前列腺癌細(xì)胞DU145和LNCaP中的表達(dá)水平及對(duì)PP2A-Aα的調(diào)控作用[D];湖南師范大學(xué);2015年

9 皮亞洲;RKIP的克隆、表達(dá)及其影響腫瘤細(xì)胞遷移和細(xì)胞凋亡檢測(cè)性質(zhì)初步研究[D];南京大學(xué);2013年

10 李松玉;PKCζ與Ⅱa型組蛋白去乙酰化酶相互作用調(diào)節(jié)前列腺癌細(xì)胞Warburg效應(yīng)及其機(jī)制[D];南方醫(yī)科大學(xué);2014年

,

本文編號(hào):2230557

資料下載
論文發(fā)表

本文鏈接:http://www.lk138.cn/yixuelunwen/mjlw/2230557.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶(hù)3cff5***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com