內(nèi)質(zhì)網(wǎng)源性轉(zhuǎn)錄因子CHOP在腎臟缺血再灌注損傷中的作用和機(jī)制研究
[Abstract]:Acute kidney injury (AKI) is a common clinical syndrome caused by a variety of diseases. It refers to the sudden deterioration of renal function caused by the damage of kidney structure or function. Ischemia reperfusion injury (IRI) is one of the main causes of acute kidney injury and has a high incidence. Morbidity and mortality are accompanied by a series of cellular events, including cell necrosis, apoptosis, infiltration of inflammatory cells and release of active mediators, leading to tissue damage.
Endoplasmic reticulum (ER) is an important organelle in eukaryotic cells. It plays an important role in the synthesis and transport of proteins, glycosylation modification of proteins and the storage and distribution of calcium ions. Endoplasmic reticulum stress (ERS) is a state of endoplasmic reticulum stress (ERS) in which misfolded and unfolded proteins accumulate in the endoplasmic reticulum.
Renal ischemia-reperfusion injury is a common stress disease caused by renal dysfunction of blood supply. Glaumann et al. proposed in the 1970s that restoring the blood supply of the kidney after ischemia could aggravate the original injury caused by ischemia alone, and pointed out that the pathogenesis of ischemia-reperfusion injury is based on the impairment of local energy metabolism. It has been proved that renal ischemia-reperfusion injury is closely related to endoplasmic reticulum stress. In this process, tissue ischemia-hypoxia, glucose/nutrient deficiency, ATP depletion, large amount of free radicals production and calcium homeostasis damage can cause endoplasmic reticulum dysfunction, triggering. Endoplasmic reticulum stress. Excessive endoplasmic reticulum stress aggravates ischemia-reperfusion injury by destroying calcium homeostasis and inducing apoptosis, but its specific mechanism has not been elaborated in detail. The expression of owth arrest and DNA damage inducible 153 (GADDl53) was elevated, while the expression of caspase-11 was elevated, resulting in damage to renal function.
In this study, we established a renal ischemia-reperfusion injury model in wild type mice and CHOP knockout mice to explore the specific role and mechanism of CHOP in renal ischemia-reperfusion injury, and further cultured human renal tubular epithelial cells (HK-2) and human umbilical vein endothelial cells (HUVEC) in vitro and established a hypoxia-reoxygenation injury model. The important role of CHOP and its molecular mechanism provide scientific basis for elucidating the pathogenesis of acute ischemic renal injury and searching for new therapeutic targets.
1. experimental method
1.1 experimental animals
CHOP knockout mice were imported from Jackson Laboratory of USA. Adult male wild type mice weighing 22-26 g and CHOP knockout mice were used in this experiment. The experimental animals were fed day and night for 12 hours and fed free water and diet.
1.2 renal ischemia-reperfusion injury model
After anesthesia with sodium pentobarbital (60 mg/kg), the animals were placed on the operating table equipped with a thermostat. During the whole experiment, the body temperature was controlled at about 36 C. The right kidney was removed through a median abdominal incision, and the left renal artery and vein were clamped with a protective microvascular clip for 25 minutes. Left renal artery and vein were not clamped. Blood samples were taken from abdominal aorta and kidney tissues were taken for further examination 24 hours after ischemia and reperfusion.
1.3 bone marrow transplantation
The recipients were irradiated with cobalt 60 twice at a total dose of 10.5 Gy at intervals of 4 hours. Two hours after irradiation, bone marrow cells were extracted from the donor and injected into the recipient by 1 *107 cells per caudal vein. A renal ischemia-reperfusion injury model was established 30 days after bone marrow transplantation.
1.4 cell culture and anoxia reoxygenation (HR) model
Human renal tubular epithelial cells (HK-2) and human umbilical vein endothelial cells (HUVEC) were cultured in DMEMs containing 10% fetal bovine serum and placed in incubators with 37 C and 5% CO2. The cells were placed in 6-well plates with 5 105 cells/pores. According to the experimental scheme, the cells were placed in normal (5% CO2, 21% O2 and 74% N2) and hypoxic (5% CO2, 1% O2 and 94% N2).
Construction of 1.5siRNA interference
The siRNA of CHOP was synthesized, purified and annealed by Yingjie Biotechnology Company, USA. The specific sequence of siRNA synthesis was GCUAGGAAUGAATT, UUCUCUUCAGCUAGCTT.HK-2 cells and HUVECs were transfected with Lipofectamin 2000 at 80nM plasmid concentration.
2. experimental results
2.1CHOP mediates apoptosis in renal ischemia-reperfusion injury in mice
Expression of CHOP and cleaved caspase-3 protein in 2.1.1 kidneys after IR
Compared with the control group, the expression of cleaved caspase-3 protein increased at the beginning of CHOP 3 hours after IR, reached the peak at 6 hours after reperfusion, and lasted for 24 hours, which was significantly higher than that of the control group (p0.05).
Cleaved caspase-3 protein expression and survival rate, renal function and pathological changes after 2.1.2CHOP knockout
Changes of cleaved caspase-3 protein expression: The expression of cleaved caspase-3 protein in CHOP knockout mice 6 hours after IR was lower than that in wild type mice (p0.05).
Survival rate: the survival rate of CHOP knockout mice after IR (80%) was significantly higher than that of wild type mice (0%) (P0.05).
Comparison of renal function: CHOP knockout mice 24 hours after IR serum creatinine, blood urea nitrogen were significantly lower than wild type mice (p0.05).
Pathological comparison: the pathological changes of CHOP knockout mice were significantly reduced at 24 hours after IR (P0.05).
2.1.3CHOP knockout reduces IR damage by affecting renal microcirculation perfusion
CHOP knockout significantly improved the early microcirculatory perfusion of ischemic kidneys, thereby reducing the renal ischemia-reperfusion injury in mice compared with wild-type mice after IR.
2.2 Bone marrow transplantation confirms that CHOP mediates apoptosis in IR in renal innate cells rather than in bone marrow-derived immune cells
Changes in survival rate after IR in 2.2.1 four groups of bone marrow transplant mice
Survival rate of four groups of bone marrow transplantation mice after IR observation 7 days, bone marrow transplantation WT WT mice survival rate (0%) and bone marrow transplantation CHOP -/- WT mice survival rate (0%) compared with no significant difference (p0.05); bone marrow transplantation WT CHOP -/- mice survival rate (80%) and bone marrow transplantation CHOP -/- CHOP /- mice survival rate (70%) compared with no significant difference. Difference (P0.05).
Changes in renal function after 2.2.2 IR in four groups of bone marrow transplant mice
Comparison of renal function: There was no significant difference in serum creatinine and blood urea nitrogen between bone marrow transplanted WT WT mice and bone marrow transplanted CHOP -/- WT mice 24 hours after IR (p0.05); there was no significant difference in serum creatinine and blood urea nitrogen between bone marrow transplanted WT CHOP -/- mice and bone marrow transplanted CHOP -/ CHOP -/- mice 24 hours after IR (p0.05).
Pathological changes of 2.2.3 four groups of bone marrow transplantation mice after IR
Pathological comparison: BMT WT WT mice and BMT CHOP -/- WT mice had no significant difference in pathological changes 24 hours after IR (p0.05); BMT WT CHOP -/- mice and BMT CHOP -/- mice, there was no significant difference in pathological changes 24 hours after IR (p0.05).
2.3, CHOP mediated apoptosis in renal tubular epithelial cells and endothelial cells.
Injury of renal tubular epithelial cells induced by 2.3.1 hypoxia reoxygenation
LDH level: Compared with the control group, the level of LDH in cell supernatant increased 6 hours after HR and continued to increase to 24 hours after reoxygenation (p0.05).
CHOP protein expression: compared with the control group, HR increased after 6 hours, and increased to 24 hours (P0.05).
Cleaved caspase-3 protein expression: compared with the control group, 6 hours after HR increased, continued to increase to 24 hours (p0.05).
Endothelial cell injury induced by 2.3.2 hypoxia reoxygenation
LDH level: Compared with the control group, the level of LDH in cell supernatant increased 6 hours after HR and did not decrease significantly until 24 hours after reoxygenation (p0.05).
CHOP protein expression: Compared with the control group, HR increased at 6 hours and remained unchanged until 24 hours after reoxygenation (p0.05).
Cleaved caspase-3 protein expression: compared with the control group, HR increased at 6 hours and did not decrease significantly until 24 hours after reoxygenation (p0.05).
2.3.3CHOP gene silencing significantly alleviated HR induced renal tubular epithelial cell injury
LDH level: Compared with HR 24 hours group, CHOP siRNA significantly reduced the injury of renal tubular epithelial cells after HR, and the LDH level in cell culture supernatant decreased significantly (p0.05).
CHOP siRNA significantly inhibited the expression of CHOP protein in renal tubular epithelial cells induced by HR (P0.05).
CHOP gene silencing significantly inhibited the expression of cleaved caspase-3 protein in renal tubular epithelial cells 24 hours after HR (p0.05).
2.3.4CHOP gene silencing significantly alleviated endothelial cell injury induced by HR
LDH level: Compared with HR6-hour group, CHOP siRNA significantly reduced the injury of HR endothelial cells, and LDH level in cell culture supernatant decreased significantly (p0.05).
CHOPsiRNA significantly inhibited HR induced CHOP protein expression in endothelial cells (P0.05).
CHOP gene silencing significantly inhibited the expression of cleaved caspase-3 protein in endothelial cells 6 hours after HR (P0.05).
3. conclusion
The activation of CHOP in intrinsic cells of kidney plays an important role in mediating apoptosis and impairment of renal function in IR injury of kidney.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2014
【分類(lèi)號(hào)】:R692.5
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 金梅良;CHOP治療NHL致腫瘤溶解綜合癥死亡1例[J];腫瘤防治研究;1997年05期
2 李虎生;張華;陶曉明;;利妥昔單抗聯(lián)合CHOP方案治療26例B細(xì)胞性淋巴瘤的臨床分析[J];華夏醫(yī)學(xué);2009年03期
3 李濤;蘇炳光;凌華晃;蔡茂德;吳祥成;;CHOP和CHOEP方案治療非霍奇金淋巴瘤的臨床觀察[J];中華腫瘤防治雜志;2007年13期
4 向華,王堅(jiān),孫孟紅,陸磊,水若鴻,朱雄增;黏液樣/圓細(xì)胞型脂肪肉瘤石蠟包埋組織中FUS-CHOP融合基因檢測(cè)的臨床病理學(xué)意義[J];中華病理學(xué)雜志;2005年01期
5 謝哲,黃達(dá)仁;CHOP方案治療惡性淋巴瘤32例臨床分析[J];海南醫(yī)學(xué);2005年05期
6 張靜;徐敬根;;美羅華聯(lián)合CHOP方案治療B細(xì)胞性非霍奇金淋巴瘤療效觀察[J];當(dāng)代醫(yī)學(xué);2011年10期
7 黎軍和;氟達(dá)拉濱、CAP和ChOP方案治療938例初治B期和C期慢性淋巴細(xì)胞白血病療效的隨機(jī)比較[J];國(guó)外醫(yī)學(xué).內(nèi)科學(xué)分冊(cè);2002年10期
8 黃春暉;孫守金;謝鳳玲;;放療聯(lián)合CHOP(或類(lèi)似方案)化療治療鼻腔非霍奇金淋巴瘤12例療效觀察[J];臨床醫(yī)藥實(shí)踐;2009年17期
9 黃春暉;孫守金;謝鳳玲;;放療聯(lián)合CHOP(或類(lèi)似方案)化療治療鼻腔非霍奇金淋巴瘤12例療效觀察[J];臨床醫(yī)藥實(shí)踐;2009年18期
10 林友;;CHOP-R方案聯(lián)合治療復(fù)發(fā)性彌漫大B細(xì)胞性淋巴瘤六例療效觀察[J];海南醫(yī)學(xué);2010年10期
相關(guān)會(huì)議論文 前10條
1 趙勝;陳欣林;田志云;Jack Rychik;;CHOP評(píng)分診斷雙胎輸血綜合征的應(yīng)用研究[A];中國(guó)超聲醫(yī)學(xué)工程學(xué)會(huì)第三屆全國(guó)婦產(chǎn)及計(jì)劃生育超聲醫(yī)學(xué)學(xué)術(shù)會(huì)議論文匯編[C];2010年
2 王曉雪;李艷;;美羅華聯(lián)合CHOP方案與CHOP方案治療Ⅲ、Ⅳ期彌漫大B細(xì)胞性淋巴瘤的臨床對(duì)比研究[A];全國(guó)中西醫(yī)結(jié)合血液學(xué)學(xué)術(shù)會(huì)議論文匯編[C];2010年
3 ;The Effect of Endoplasmic Reticulum Stress Protein CHOP on Cyclosporine A-induced Injury of Glomerular Endothelial Cells[A];第八屆海峽兩岸心血管科學(xué)研討會(huì)論文集[C];2011年
4 馬孝甜;孫麗洲;;子癇前期內(nèi)質(zhì)網(wǎng)應(yīng)激相關(guān)蛋白CHOP/GADD153的表達(dá)及其意義[A];中華醫(yī)學(xué)會(huì)第三次全國(guó)妊娠期高血壓疾病學(xué)術(shù)研討會(huì)論文匯編[C];2011年
5 宋娟;;美羅華聯(lián)合CHOP方案治療彌漫性大B細(xì)胞性淋巴瘤的護(hù)理[A];全國(guó)護(hù)理教育研討會(huì)暨第2次護(hù)理學(xué)院(校)長(zhǎng)論壇論文集[C];2010年
6 李光乾;王海萍;;驚厥持續(xù)狀態(tài)幼年大鼠海馬中GRP78、CHOP的表達(dá)及依達(dá)拉奉對(duì)其影響(摘要)[A];2011年浙江省醫(yī)學(xué)會(huì)兒科學(xué)分會(huì)學(xué)術(shù)年會(huì)暨兒內(nèi)科疾病診治新進(jìn)展國(guó)家級(jí)學(xué)習(xí)班論文匯編[C];2011年
7 張立;羅百靈;何白梅;袁婷;胡成平;;HO-1對(duì)香煙煙霧提取物誘導(dǎo)的支氣管上皮細(xì)胞凋亡及CHOP表達(dá)的調(diào)節(jié)作用[A];中華醫(yī)學(xué)會(huì)呼吸病學(xué)年會(huì)——2011(第十二次全國(guó)呼吸病學(xué)學(xué)術(shù)會(huì)議)論文匯編[C];2011年
8 管忠震;;惡性淋巴瘤的治療進(jìn)展[A];中華醫(yī)學(xué)會(huì)第八次全國(guó)血液學(xué)學(xué)術(shù)會(huì)議論文匯編[C];2004年
9 王亞蘭;王曉紅;于煥欣;;沙利度胺聯(lián)合CHOP方案治療52例侵襲性非霍奇金淋瘤臨床對(duì)照研究[A];第十一屆中國(guó)抗癌協(xié)會(huì)全國(guó)淋巴瘤學(xué)術(shù)大會(huì)教育論文集[C];2009年
10 宋小英;潘建蘭;;CHOP方案化療治療骨原發(fā)性非何杰金淋巴瘤的護(hù)理[A];2006年貴州省醫(yī)學(xué)會(huì)骨科學(xué)分會(huì)學(xué)術(shù)年會(huì)論文匯編[C];2006年
相關(guān)重要報(bào)紙文章 前10條
1 本報(bào)特約撰稿人 欒雪梅;大劑量化療+干細(xì)胞移植優(yōu)于常規(guī)化療[N];醫(yī)藥經(jīng)濟(jì)報(bào);2004年
2 駐京記者 賈巖;治療年輕DLBCL患者,哪種方案好[N];醫(yī)藥經(jīng)濟(jì)報(bào);2010年
3 劉元江;利妥昔單抗聯(lián)合CHOP治療彌漫大B細(xì)胞淋巴瘤的成本-效果分析[N];醫(yī)藥經(jīng)濟(jì)報(bào);2005年
4 樓南星;年少不輕狂 網(wǎng)絡(luò)寫(xiě)精彩[N];經(jīng)理日?qǐng)?bào);2003年
5 徐茜茜 吳靜 胡澤團(tuán);我是CCS一員[N];中國(guó)水運(yùn)報(bào);2004年
6 本報(bào)記者 慕欣;如何選擇B/T——LBL/ALL診治方案[N];醫(yī)藥經(jīng)濟(jì)報(bào);2010年
7 古今;手表 年輕風(fēng)潮擋不住[N];中國(guó)礦業(yè)報(bào);2002年
8 天津醫(yī)科大學(xué)附屬腫瘤醫(yī)院淋巴腫瘤科主任 王華慶;惡性淋巴瘤 診治主旋律變化進(jìn)行時(shí)[N];健康報(bào);2010年
9 張化;歐洲珠寶市場(chǎng)變臉[N];國(guó)際經(jīng)貿(mào)消息;2001年
10 青鋒;抗非何杰金淋巴瘤單克隆抗體顯功效[N];醫(yī)藥經(jīng)濟(jì)報(bào);2001年
相關(guān)博士學(xué)位論文 前10條
1 董彪;內(nèi)質(zhì)網(wǎng)源性轉(zhuǎn)錄因子CHOP在腎臟缺血再灌注損傷中的作用和機(jī)制研究[D];吉林大學(xué);2014年
2 吳婷婷;X盒結(jié)合蛋白1在糖尿病心肌病心肌細(xì)胞凋亡中的作用機(jī)制研究[D];山東大學(xué);2012年
3 景寶;PTEN敲除小鼠前列腺癌模型的蛋白組學(xué)分析靶基因Chop的確定及誘導(dǎo)性表達(dá)c-myc細(xì)胞系的建立[D];天津醫(yī)科大學(xué);2013年
4 張亞妮;Zhangfei基因在細(xì)胞內(nèi)質(zhì)網(wǎng)應(yīng)激反應(yīng)中的生物功能研究[D];西北農(nóng)林科技大學(xué);2010年
5 李惠玲;大鼠視網(wǎng)膜再灌注損傷致細(xì)胞凋亡的內(nèi)質(zhì)網(wǎng)應(yīng)激機(jī)制研究[D];中南大學(xué);2006年
6 申向民;鼠腦缺血再灌后神經(jīng)元凋亡的內(nèi)質(zhì)網(wǎng)應(yīng)激機(jī)制及依達(dá)拉奉的影響[D];中南大學(xué);2007年
7 曲鵬;NGF和CGRP對(duì)局灶性腦缺血再灌注大鼠皮質(zhì)神經(jīng)元P38MAPK,CHOP及IL-1β表達(dá)的調(diào)節(jié)作用[D];中國(guó)醫(yī)科大學(xué);2007年
8 劉光輝;內(nèi)質(zhì)網(wǎng)應(yīng)激在糖尿病腎損害中的作用機(jī)制研究[D];山東大學(xué);2010年
9 徐利明;原發(fā)縱隔B細(xì)胞淋巴瘤綜合治療及調(diào)強(qiáng)放療結(jié)果和劑量分析[D];北京協(xié)和醫(yī)學(xué)院;2013年
10 熊學(xué)華;載脂蛋白E對(duì)創(chuàng)傷性顱腦損傷后內(nèi)質(zhì)網(wǎng)應(yīng)激的影響及意義[D];重慶醫(yī)科大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 王曉雪;美羅華聯(lián)合CHOP方案與CHOP方案治療Ⅲ、Ⅳ期彌漫大B細(xì)胞性淋巴瘤的臨床對(duì)比研究[D];中國(guó)醫(yī)科大學(xué);2010年
2 李楠;蛋白酶體抑制劑硼替佐米通過(guò)內(nèi)質(zhì)網(wǎng)應(yīng)激調(diào)亡途徑CHOP誘導(dǎo)人腦膠質(zhì)瘤細(xì)胞凋亡的機(jī)制研究[D];山西醫(yī)科大學(xué);2011年
3 楊寧寧;美羅華聯(lián)合CHOP方案與CHOP方案治療B細(xì)胞非霍奇金淋巴瘤的臨床對(duì)比研究[D];山東大學(xué);2012年
4 趙振慧;CHOP方案一線治療維、漢不同亞型DLBCL的療效觀察[D];新疆醫(yī)科大學(xué);2013年
5 王麗玲;FND與CHOP方案治療惰性淋巴瘤的臨床分析[D];新疆醫(yī)科大學(xué);2010年
6 童玉娜;內(nèi)質(zhì)網(wǎng)源性轉(zhuǎn)錄因子CHOP在缺氧復(fù)氧誘導(dǎo)腎小管上皮細(xì)胞炎癥反應(yīng)中的作用和機(jī)制研究[D];第三軍醫(yī)大學(xué);2011年
7 黃若新;不同化療方案治療初治彌漫大B細(xì)胞淋巴瘤的療效觀察[D];福建醫(yī)科大學(xué);2010年
8 胡炳俊;轉(zhuǎn)hIAPP和CHOP基因調(diào)控小鼠β細(xì)胞凋亡的研究[D];中國(guó)農(nóng)業(yè)科學(xué)院;2013年
9 周哲;一氧化碳和內(nèi)質(zhì)網(wǎng)應(yīng)激蛋白CHOP在環(huán)孢霉素A引起的腎小球內(nèi)皮細(xì)胞損傷中的作用[D];寧夏醫(yī)科大學(xué);2011年
10 裴菲;內(nèi)質(zhì)網(wǎng)應(yīng)激蛋白(BiP、CHOP)在多囊卵巢綜合征患者血白細(xì)胞中表達(dá)的研究[D];安徽醫(yī)科大學(xué);2013年
本文編號(hào):2219616
本文鏈接:http://www.lk138.cn/yixuelunwen/mjlw/2219616.html