基于局部特征的遙感圖像目標(biāo)檢測方法研究
[Abstract]:In recent years, with the development of remote sensing satellite technology, the application range of remote sensing images in military and civil fields has been gradually expanded. The research on remote sensing image target detection methods has attracted more and more attention from scholars in various countries. In general, people are concerned only with a small part of the entire image or the whole segment of the visual frequency, and use the global features in a single way. The target detection has been limited in practical application, which has some limitations, and the advantage of the local feature on the performance of information description provides an effective way for remote sensing target detection under complex background. In order to improve the efficiency and reliability of remote sensing information processing, the military reconnaissance and information collection will be enhanced. In this paper, the ability of the collection, focusing on the detection and identification of the mass target, the array target and the port target in remote sensing images, takes the oil tank, aircraft and ship as the specific research object, and studies the above objectives systematically with the characteristics of the target in the human visual perception system and the spatial relationship of its local characteristics. On the basis of this, the detection and recognition method for different types of objects in remote sensing images is proposed, and the efficiency and adaptability of the remote sensing target detection and recognition system are improved. The research results are obtained. This paper mainly studies the typical target detection method of remote sensing images based on the visual local features. The following work is as follows: 1. in view of the low accuracy of the target edge detection results of remote sensing images, then the image matching, target tracking and other image processing analysis precision problems. The thesis first analyzes the human visual physiological structure and the characteristics of remote sensing targets, systematically studies the interpretation process of remote sensing image, and the factors, methods and development of the interpretation. The trend is summarized and summarized, which lays a solid theoretical foundation for the research of remote sensing target detection and recognition in the full text. Then a method of detection of target edge features of remote sensing image based on visual perception is proposed. The visual perception and remote sensing targets are excavated through the theoretical study and analysis of the characteristics of the visual perception system. The experimental verification of the effectiveness of the high and low threshold method based on visual perception to the detection of edge features of remote sensing images is verified by experiments, and by comparing with other algorithms, it is proved that this method can effectively improve the accuracy of the descriptors of each edge feature descriptor.2. to increase the resolution of remote sensing images. In addition, the image content tends to be complicated, the target is affected by the shadow interference and the recognition rate is reduced, and the accuracy of the target detection is faced with the great difficulty and challenge. A new method of mass target detection based on the characteristic of the circle is proposed, which focuses on the detection and recognition of the target of the remote sensing image oil tank. The experimental results show that this paper is proposed in this paper. Compared with other methods, the accuracy of the detection results has been effectively improved, and the location of the oil storage area can be realized quickly by the detection results. The algorithm is suitable for the remote sensing image.3. of different resolution. The target of the aircraft is shadowed by its own shadow and building occlusion in the actual remote sensing image. As well as the influence of ground object interference, the shadow outline of the aircraft target is mistaken for the aircraft target, which reduces the accuracy of the detection and leads to the reduction of the accuracy of the actual aircraft target location and feature extraction. In this paper, an array target detection and recognition method based on the invariant features is proposed. The detection and recognition of the aircraft target in the airport background is studied. The experimental results show that the implementation of this method is simple. Compared with other detection methods, it has good robustness to the interference effect of the target background, and the computation is small. The accuracy of the detection results can effectively improve the.4. target ship's target in remote sensing images. The gray and texture features of the standard are close to the port. The traditional detection method is not easy to separate the target from the port, and the detection accuracy is low. In this paper, a method of ship detection on the starboard of remote sensing images based on local significant features is proposed. In the environment, the effect of target detection is better, and the algorithm is not affected by the berthing position and shadow of the ship. The target recognition rate is higher and the robustness is stronger.
【學(xué)位授予單位】:長春理工大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:TP751
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張仁華;《遙感圖像應(yīng)用處理與分析》評介[J];地理研究;2004年04期
2 李偉;;遙感圖像中的道路提取[J];自動化博覽;2006年05期
3 李傳龍;李穎;馬龍;;一種新的遙感圖像海岸線檢測方法[J];計算機(jī)仿真;2010年08期
4 張學(xué)良;肖鵬峰;馮學(xué)智;;基于圖像內(nèi)容層次表征的遙感圖像分割方法[J];中國圖象圖形學(xué)報;2012年01期
5 秦其明;遙感圖像自動解譯面臨的問題與解決的途徑[J];測繪科學(xué);2000年02期
6 陳小琪;現(xiàn)代計算機(jī)印前制版技術(shù)在遙感圖像印制中的應(yīng)用研究——以《長江經(jīng)濟(jì)帶可持續(xù)發(fā)展地圖集》為例[J];地球信息科學(xué);2000年02期
7 鄧湘金,彭海良;一種基于遙感圖像的機(jī)場檢測方法[J];測試技術(shù)學(xué)報;2002年02期
8 余杰千,方濤,陳雍業(yè);一種有效的遙感圖像無縫分割方法[J];計算機(jī)應(yīng)用;2003年12期
9 吳為祿;遙感圖像中的云層消除處理[J];鐵路航測;2003年01期
10 于輝,徐軍;彩色遙感圖像目標(biāo)提取方法研究[J];遙感技術(shù)與應(yīng)用;2003年06期
相關(guān)會議論文 前10條
1 張鳳春;董增壽;劉明君;;基于局部方差均衡的遙感圖像增強(qiáng)方法[A];第六屆全國信息獲取與處理學(xué)術(shù)會議論文集(2)[C];2008年
2 鄧冰;林宗堅;彭曉東;;遙感圖像信息度量的原理與方法[A];《測繪通報》測繪科學(xué)前沿技術(shù)論壇摘要集[C];2008年
3 江興方;江鴻;何賢強(qiáng);;遙感圖像兩種半自動拼接方法的研究[A];全國農(nóng)業(yè)遙感技術(shù)研討會論文集[C];2009年
4 羅睿;張永生;范永弘;鄧雪清;;遙感圖像基于內(nèi)容查詢的研究與實踐[A];第十三屆全國遙感技術(shù)學(xué)術(shù)交流會論文摘要集[C];2001年
5 陳東;龐怡杰;黃勇杰;;大傾斜航空遙感圖像快速自動鑲嵌技術(shù)[A];圖像 仿真 信息技術(shù)——第二屆聯(lián)合學(xué)術(shù)會議論文集[C];2002年
6 黃勇杰;王樹國;劉俊義;陳東;;遙感圖像去云算法研究[A];首屆信息獲取與處理學(xué)術(shù)會議論文集[C];2003年
7 謝建春;趙榮椿;;遙感圖像中的軍用機(jī)場識別算法研究[A];信號與信息處理技術(shù)第三屆信號與信息處理全國聯(lián)合學(xué)術(shù)會議論文集[C];2004年
8 陳姚;王金亮;李石華;;遙感圖像中云層遮擋影響消除處理方法研究述評[A];第十五屆全國遙感技術(shù)學(xué)術(shù)交流會論文摘要集[C];2005年
9 張磊;朱磊;;遙感圖像中直線目標(biāo)的檢測[A];第十五屆全國遙感技術(shù)學(xué)術(shù)交流會論文摘要集[C];2005年
10 邱磊;李國輝;衡祥安;;一種基于交互學(xué)習(xí)的遙感圖像挖掘方法[A];第一屆建立和諧人機(jī)環(huán)境聯(lián)合學(xué)術(shù)會議(HHME2005)論文集[C];2005年
相關(guān)重要報紙文章 前5條
1 蔣建科邋孫宏金 陳樹琛;傳回清晰遙感圖像[N];人民日報;2008年
2 記者 鄭千里;北京地區(qū)有了航空遙感圖像[N];科技日報;2000年
3 本報通訊員;煤航遙感院獲美國快鳥遙感圖像西部代理權(quán)[N];中煤地質(zhì)報;2005年
4 王石;印度通過“快鳥”影像發(fā)現(xiàn)古墓地[N];中國測繪報;2010年
5 記者 馬彥平 張桂敏;澳大利亞鉀礦鉆探啟動[N];農(nóng)資導(dǎo)報;2011年
相關(guān)博士學(xué)位論文 前10條
1 李軒;基于局部特征的遙感圖像目標(biāo)檢測方法研究[D];長春理工大學(xué);2016年
2 朱光;基于遙感圖像的交通道路目標(biāo)識別方法研究[D];吉林大學(xué);2015年
3 祁友杰;基于SoC技術(shù)的遙感圖像快速匹配方法研究[D];東南大學(xué);2016年
4 霍麗君;基于變分的遙感圖像恢復(fù)算法研究[D];中國科學(xué)院長春光學(xué)精密機(jī)械與物理研究所;2017年
5 陳彥彤;基于局部不變特征的遙感圖像星上目標(biāo)識別技術(shù)研究[D];中國科學(xué)院長春光學(xué)精密機(jī)械與物理研究所;2017年
6 江興方;遙感圖像去云方法的研究及其應(yīng)用[D];南京理工大學(xué);2007年
7 滕鑫鵬;遙感圖像道路提取研究[D];江蘇大學(xué);2014年
8 劉春紅;超光譜遙感圖像降維及分類方法研究[D];哈爾濱工程大學(xué);2005年
9 劉哲;基于信息融合的遙感圖像處理方法研究[D];西北工業(yè)大學(xué);2002年
10 強(qiáng)贊霞;遙感圖像的融合及應(yīng)用[D];華中科技大學(xué);2005年
相關(guān)碩士學(xué)位論文 前10條
1 劉雪瑩;基于深度學(xué)習(xí)的遙感圖像檢索方法研究[D];中國科學(xué)院大學(xué)(中國科學(xué)院遙感與數(shù)字地球研究所);2017年
2 邱磊;基于內(nèi)容的遙感圖像挖掘方法研究[D];國防科學(xué)技術(shù)大學(xué);2005年
3 陳浩;高分辨遙感圖像災(zāi)區(qū)建筑檢測[D];南京理工大學(xué);2015年
4 朱然;大數(shù)據(jù)量復(fù)雜背景下橋梁水壩目標(biāo)快速識別[D];電子科技大學(xué);2015年
5 王靜靜;基于NSCT和Shearlet變換的遙感圖像增強(qiáng)研究[D];新疆大學(xué);2014年
6 柴宏磊;基于知識的遙感圖像港口目標(biāo)識別[D];電子科技大學(xué);2015年
7 馮一鳴;基于遙感圖像中港口目標(biāo)的分割算法研究與實現(xiàn)[D];西安電子科技大學(xué);2014年
8 吳云坤;遙感圖像變化檢測技術(shù)研究[D];國防科學(xué)技術(shù)大學(xué);2013年
9 王旭;無參考遙感圖像質(zhì)量綜合評價算法研究[D];西安電子科技大學(xué);2015年
10 宋玉梅;基于遙感圖像的內(nèi)河航道識別研究[D];重慶交通大學(xué);2015年
,本文編號:2161118
本文鏈接:http://www.lk138.cn/shoufeilunwen/xxkjbs/2161118.html