高性能帶通∑△模數(shù)轉(zhuǎn)換器芯片研究與實現(xiàn)
[Abstract]:In recent years, the high precision capacitive accelerometer on chip system (SoC) integrates the micromechanical sensor with the peripheral circuit, further compresses the volume, saves the cost, and has the advantages of high resolution, low noise, low temperature drift coefficient, low power consumption and so on. It plays an important role in the fields of aerospace, national defense military work, seismic survey and so on. In the accelerometer SoC, in order to integrate the acceleration signals collected by the sensor to digital circuits for digital signal processing, a high precision analog to digital converter (ADC) must be used to convert the analog signal output from the sensor to digital signal. The converter has become the bottleneck to limit the precision of the system. Therefore, it is very important to design and implement a high precision special analog to digital converter chip suitable for micromachined accelerometers..Sigma Delta modulation technology uses over sampling and noise shaping, without precise analog components, it can achieve high resolution. It is under the CMOS process. The best way to achieve high precision and low power analog conversion. Low pass sigma delta ADC can achieve 18 bit or higher conversion accuracy at low frequency (0-20KHz). However, in order to eliminate the influence of low frequency scintillation noise, the capacitive micromachined accelerometer modulates the acceleration signal of 4KHz bandwidth to the 100KHz-200KHz band, which is beyond the traditional low pass sigma delta ADC. The range of signal processing, while other high frequency Nyquist type ADC is difficult to achieve enough precision. Considering the conversion precision, power and circuit complexity, the band-pass sigma delta ADC is more suitable for the application of high precision capacitive micromachined accelerometers. At present, the research on the bandpass sigma delta modulation technology has been concentrated in the world at present. In the field of line communication, there are few studies on the application of micromechanical sensors, and more of the test results of actual flow sheets. In this context, a high precision and low power bandpass sigma-delta analog to digital converter applied to the micromachined accelerometer SoC is studied and designed. The main work and innovation points of this paper are as follows: systematic analysis In order to achieve high conversion precision and guarantee the stability of high order sigma delta modulator, the single loop feedforward structure is first applied to the high order bandpass sigma delta modulator, and the stability of the modulator is studied, and the stability conditions of the modulator are given. The ideal factors are theoretically analyzed and calculated. According to the simulation results, the circuit design of the bandpass sigma delta modulator is completed and the layout is designed. A large number of post simulation verification and layout optimization are carried out. A multilevel digital filter is designed for the hardware saving in the output signal of the bandpass Sigma delta modulator, which avoids the application of the multilevel digital filter. The outside band noise is mixed into the band. Based on the 0.18 m 1P6M Mixed-signal CMOS process, the first high precision bandpass sigma delta ADC chip with the 6 order 1 bit quantization modulator is designed and implemented. The single specific quantization Sigma A ADC bare area 5mm2 (including IO), the analog part uses the 3.3V power supply voltage, the digital part. 1.8V power supply voltage is used. The test results show that ADC chip can consume 5.8mW in 4KHz signal bandwidth, and can achieve 90dB signal to noise distortion ratio and 96dB dynamic range. The two defined comprehensive quality factor FOM reaches 156dB and 23.3pJ/step respectively. Compared with other applications, the FOM of this paper is in the international advanced level. In order to further improve the conversion precision of the sigma delta modulator under low oversampling rate, this paper improves on the basis of a single quantization modulator. A single loop feedforward 6 order 4 bit quantization band pass sigma delta modulator is designed, and the stability conditions are given. In the system simulation verification, the feedback DAC capacitance in the multi bit quantization modulator is analyzed. The feedback DAC nonlinear model is proposed for the first time, and the dynamic component matching circuit is designed for the first time. The nonlinearity caused by the capacitor mismatch is reduced. The circuit design, layout design with 4 bit quantization modulator, the layout design, and the post simulation verification of the.4 bit quantization sigma delta ADC bare area 4mm2 (including IO) are completed. The power consumption is 6.5mW under the 1.8V/3.3V power supply. The simulation results show that the signal to noise distortion ratio in 4KHz bandwidth is 96dB, the dynamic range 102dB. is compared with the first model, and the conversion precision is improved by 3dB, and the application needs are satisfied.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:TN792;TN761
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 丁明芳,陳衛(wèi)兵;高速高性能模數(shù)轉(zhuǎn)換器的實現(xiàn)[J];自動化與儀表;2003年01期
2 張中平;∑-Δ模數(shù)轉(zhuǎn)換器的原理及應(yīng)用[J];電子器件;2003年04期
3 ;計量秤應(yīng)用的低成本2-通道模數(shù)轉(zhuǎn)換器[J];電子產(chǎn)品世界;2004年04期
4 Len Staller;了解模數(shù)轉(zhuǎn)換器規(guī)格[J];世界電子元器件;2005年10期
5 吳春瑜;佟波;王繼安;李文昌;李威;;一種八位并行插值型模數(shù)轉(zhuǎn)換器的設(shè)計[J];遼寧大學(xué)學(xué)報(自然科學(xué)版);2009年04期
6 ;ISLA112P50:500MSPS模數(shù)轉(zhuǎn)換器[J];世界電子元器件;2010年09期
7 劉洋;蔡嘯;;簡述選擇模數(shù)轉(zhuǎn)換器時的技術(shù)指標(biāo)與注意事項[J];河南科技;2013年10期
8 惠長坤;;模數(shù)轉(zhuǎn)換器輸入通道的擴(kuò)充及其它[J];微型機與應(yīng)用;1987年05期
9 ;轉(zhuǎn)換器[J];電子科技文摘;2000年12期
10 ;24位模數(shù)轉(zhuǎn)換器切入市場[J];世界產(chǎn)品與技術(shù);2001年02期
相關(guān)會議論文 前10條
1 劉紅忠;吳金;錢黎明;;一種改進(jìn)的流水線模數(shù)轉(zhuǎn)換器的建模方法[A];第十屆中國科協(xié)年會論文集(四)[C];2008年
2 陳睿;陸嫵;任迪遠(yuǎn);鄭玉展;王義元;費武雄;李茂順;蘭博;崔江維;;10位雙極模數(shù)轉(zhuǎn)換器的電離輻射效應(yīng)[A];第十五屆全國核電子學(xué)與核探測技術(shù)學(xué)術(shù)年會論文集[C];2010年
3 周濤;許建平;賀明智;;適用于高頻開關(guān)電源數(shù)字控制器的模數(shù)轉(zhuǎn)換器[A];2006中國電工技術(shù)學(xué)會電力電子學(xué)會第十屆學(xué)術(shù)年會論文摘要集[C];2006年
4 張劍平;;一種寬輸入量程和長輸出位數(shù)的A/D電路及其算法[A];第三屆全國信息獲取與處理學(xué)術(shù)會議論文集[C];2005年
5 張謙述;劉永智;楊亞培;戴基智;唐雄貴;;一種新型集成光學(xué)模數(shù)轉(zhuǎn)換器設(shè)計[A];2007'中國儀器儀表與測控技術(shù)交流大會論文集(二)[C];2007年
6 薛亮;沈延釗;張向民;;一種A/D靜態(tài)參數(shù)和動態(tài)參數(shù)的測試方法[A];第二屆全國信息獲取與處理學(xué)術(shù)會議論文集[C];2004年
7 陳睿;陸嫵;任迪遠(yuǎn);鄭玉展;王義元;費武雄;李茂順;蘭博;;不同偏置條件的10位CMOS模數(shù)轉(zhuǎn)換器的輻射效應(yīng)[A];中國核科學(xué)技術(shù)進(jìn)展報告——中國核學(xué)會2009年學(xué)術(shù)年會論文集(第一卷·第7冊)[C];2009年
8 馬紹宇;韓雁;黃小偉;楊立吾;;一個高性能、低功耗18位音頻模數(shù)轉(zhuǎn)換器(ADC)[A];第十屆中國科協(xié)年會論文集(四)[C];2008年
9 王旭利;許獻(xiàn)國;詹峻嶺;周啟明;;模數(shù)轉(zhuǎn)換器(ADC)抗輻射性能試驗測試技術(shù)研究[A];第十屆全國抗輻射電子學(xué)與電磁脈沖學(xué)術(shù)年會論文集[C];2009年
10 蔣金水;李興國;吳文;;毫米波帶內(nèi)等波紋帶通慮波器的計算機輔助設(shè)計[A];1999年全國微波毫米波會議論文集(上冊)[C];1999年
相關(guān)重要報紙文章 前4條
1 某摩步師偵察營儀偵連中士 周飛飛;模數(shù)轉(zhuǎn)換器:夜間戰(zhàn)場偵察如白晝[N];解放軍報;2011年
2 ;24比特立體聲模數(shù)轉(zhuǎn)換器[N];中國計算機報;2004年
3 湖北 葉啟明;多功能、高性能模數(shù)轉(zhuǎn)換器ADC10080[N];電子報;2006年
4 ;TI推出12位500 MSPS ADC[N];電子資訊時報;2006年
相關(guān)博士學(xué)位論文 前10條
1 曹天霖;高性能帶通∑△模數(shù)轉(zhuǎn)換器芯片研究與實現(xiàn)[D];浙江大學(xué);2017年
2 王振宇;寬帶高線性度流水線型模數(shù)轉(zhuǎn)換器的高能效設(shè)計方法研究[D];復(fù)旦大學(xué);2013年
3 范超杰;高性能流水線型模數(shù)轉(zhuǎn)換器設(shè)計方法研究[D];上海交通大學(xué);2014年
4 景鑫;低壓低功耗流水線型模數(shù)轉(zhuǎn)換器的設(shè)計技術(shù)研究[D];西安電子科技大學(xué);2014年
5 王浩;低功耗電荷重分配式CMOS逐次逼近型模數(shù)轉(zhuǎn)換器研究[D];西安電子科技大學(xué);2016年
6 梁宇華;低功耗逐次逼近型CMOS模數(shù)轉(zhuǎn)換器的研究[D];西安電子科技大學(xué);2015年
7 杜翎;基于非二進(jìn)制量化算法的逐次逼近模數(shù)轉(zhuǎn)換器的設(shè)計[D];電子科技大學(xué);2016年
8 陳紅梅;高速時間交織模數(shù)轉(zhuǎn)換器數(shù)字校準(zhǔn)技術(shù)研究[D];中國科學(xué)技術(shù)大學(xué);2017年
9 馬紹宇;高性能、低功耗∑△模數(shù)轉(zhuǎn)換器的研究與實現(xiàn)[D];浙江大學(xué);2008年
10 林儷;折疊內(nèi)插模數(shù)轉(zhuǎn)換器的高速、低功耗低電壓設(shè)計方法研究[D];復(fù)旦大學(xué);2010年
相關(guān)碩士學(xué)位論文 前10條
1 陳華濂;12-bit Pipelined SAR ADC的研究與設(shè)計[D];華南理工大學(xué);2015年
2 索喜來;PCM編解碼芯片中模數(shù)轉(zhuǎn)換器的設(shè)計[D];河北大學(xué);2015年
3 周銀;無線通信系統(tǒng)中流水線模數(shù)轉(zhuǎn)換器的低成本低功耗研究與設(shè)計[D];復(fù)旦大學(xué);2014年
4 王偉;基于CMOS工藝高速低功耗折疊內(nèi)插結(jié)構(gòu)模數(shù)轉(zhuǎn)換器設(shè)計和研究[D];復(fù)旦大學(xué);2013年
5 代國憲;2b/cycle高速逐次逼近型模數(shù)轉(zhuǎn)換器設(shè)計研究[D];復(fù)旦大學(xué);2014年
6 姜大偉;40nm工藝下流水線模數(shù)轉(zhuǎn)換器關(guān)鍵單元的研究與設(shè)計[D];蘭州大學(xué);2015年
7 彭超;功耗可配置流水線模數(shù)轉(zhuǎn)換器電路的研究與設(shè)計[D];蘇州大學(xué);2015年
8 賀沖;多位量化Sigma-Delta模數(shù)轉(zhuǎn)換器的設(shè)計[D];哈爾濱工業(yè)大學(xué);2015年
9 汪帆;基于AD轉(zhuǎn)換器的高精度電壓測量電路的設(shè)計與實現(xiàn)[D];電子科技大學(xué);2015年
10 劉萌;高性能模數(shù)轉(zhuǎn)換器研究與設(shè)計[D];貴州大學(xué);2015年
,本文編號:2160228
本文鏈接:http://www.lk138.cn/shoufeilunwen/xxkjbs/2160228.html