復(fù)雜信號相關(guān)法實現(xiàn)光纖接入網(wǎng)高精度故障監(jiān)測
[Abstract]:With the development of optical communication technology, optical access network (optical access network), as the bearing unit of optical signal transmission, has also realized a wide range laying, which makes everyone enjoy the convenience brought by optical communication. The distribution of optical fiber in the optical access network is more dense, and the fiber to the household realizes the laying of multiple fibers in a few meters or even shorter intervals. If the precision can not distinguish the multiple fibers in these meters, if the optical fiber fails, the maintenance personnel may be misjudged, thus causing unnecessary human and material waste. In addition, the increase of the communication rate makes the operators more aggravating the effect of the optical fiber barrier. Therefore, in order to make the communication malfunction made. The most effective solution is to reduce the loss and shorten the detection and maintenance time. In the process of detection and maintenance after the optical access network fault, the maintenance time is directly related to the accuracy of the fault location. The most common and most likely problem in the optical access network is fiber optic cable. The maintenance personnel usually use the optical time domain reflector. By using the principle of the pulse flight method, the equipment has the defects of the contradiction between the positioning accuracy and the detection distance of the fault, which limits the positioning accuracy in the long distance measurement. The precision is reduced to tens of meters or even hundreds of meters after the range is over ten kilometers. The maintenance personnel can only search and check in the range of precision, resulting in maintenance. It is difficult to carry out the work in time. Although the researchers have proposed a variety of optical fiber fault location methods, it is difficult to implement the remote high precision positioning function with a simple device. In order to control the operation and maintenance costs strictly, the operators need simple and practical monitoring devices to realize the maintenance of optical fiber in the optical access network with a wide distribution in recent years. It is found that the detection technique of correlation method can realize large range and high precision fault detection and solve the defect of optical time domain reflectometry. However, this method is very strict with the detection signal: periodicity will limit the detection distance and the bandwidth of the signal will limit the detection accuracy. Therefore, detection in the correlation method detection technology, detection The signal requires an aperiodic, high bandwidth and uncomplicated condition that can be used to monitor the fault of the optical network. Now there are three main types of optical access networks: active optical network, passive wavelength division multiplexing optical network, passive time division multiplexing optical network. The requirements of the monitoring device are also focused. Based on the principle of relevant methods, this paper puts forward the corresponding high precision monitoring device for these three kinds of networks, which has simple structure and good application prospect. The main contents and innovation points of this paper are as follows: 1. the related detection techniques are analyzed in principle from the existing optical fiber fault detection technology. Compared with other technologies, and the requirement of the detection signal, 2. in active optical network, the communication signals in the network are used as detection signals, with the aid of the characteristics of random oscillation and high change rate of the signal, the real-time centimetre precision fault monitoring is realized in the existing network, and the positioning work is realized. 3. in the passive wavelength division multiplexing optical network, because each branch has specific wavelength information, the spectrum range of the detection signal must cover all the wavelength information of all the branches of the network. Therefore, we use the high integrated ultra radiant light emitting diode to make use of the characteristics of its wide spectrum and the random fluctuation of the output signal. High precision fault monitoring; 4. in the passive time division multiplexing optical network, because it is difficult to distinguish the specific branch from the signal characteristics, we add reflective optical filters at the end of each branch. The reflection of the filter or the Finel reflection of the fault point provides multi light feedback to make the detection laser produce chaotic laser. The chaotic laser signal The time delay (position) information of the external cavity reflects the position of the feedback point, and then the fault branch and the fault location can be judged by the disappearing filter position information and the new position information. The fault detection of millimeter level precision is obtained in the experiment.
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:TN915.63
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張淑清,王力,李昕;小波分析在故障監(jiān)測及診斷中的應(yīng)用[J];傳感技術(shù)學(xué)報;2001年01期
2 謝(王爭);潘莉;;大型自動化控制系統(tǒng)的故障監(jiān)測[J];電氣傳動;1996年05期
3 張林,,黃戰(zhàn);智能化故障監(jiān)測與診斷方法[J];深圳大學(xué)學(xué)報;1995年Z1期
4 王慧燕,諸靜,孫希航;基于小波和矩的邊緣特征提取及其在故障監(jiān)測中的應(yīng)用[J];信息與控制;2003年03期
5 王永;梁偉光;韓飛;周建亮;;基于證據(jù)理論的振動發(fā)散故障監(jiān)測方法[J];振動.測試與診斷;2011年04期
6 逄玉俊;王玉武;;在線故障監(jiān)測專家系統(tǒng)結(jié)構(gòu)研究[J];自動化與儀表;1992年03期
7 陳珂,殷國富,田大慶;基于網(wǎng)絡(luò)技術(shù)的凹印機(jī)遠(yuǎn)程故障監(jiān)測系統(tǒng)[J];計算機(jī)工程;2004年06期
8 朱名銓,姬中岳;故障監(jiān)測系統(tǒng)的性能評價[J];振動、測試與診斷;1992年03期
9 吳永橋,余小華,黎明發(fā);電梯故障監(jiān)測保護(hù)器的研制[J];武漢理工大學(xué)學(xué)報(信息與管理工程版);2001年01期
10 王汝言;常交法;隆克平;陽小龍;朱維樂;;一種光突發(fā)交換網(wǎng)絡(luò)的故障監(jiān)測與定位機(jī)制[J];光電子·激光;2006年12期
相關(guān)會議論文 前5條
1 陳斌;劉亞杰;;電子設(shè)備分布式遠(yuǎn)程智能故障監(jiān)測系統(tǒng)[A];艦船電子裝備維修理論與應(yīng)用——中國造船工程學(xué)會電子修理學(xué)組第四屆年會暨信息裝備保障研討會論文集[C];2005年
2 王樹德;孫萬華;;反應(yīng)堆控制保護(hù)裝置中的故障監(jiān)測模塊[A];第8屆全國核電子學(xué)與核探測技術(shù)學(xué)術(shù)年會論文集(二)[C];1996年
3 武兵;張宏;熊詩波;林健;;PCA方法在Multi-Agent智能故障監(jiān)測系統(tǒng)中的應(yīng)用[A];2007年中國智能自動化會議論文集[C];2007年
4 孫垎;李永剛;李海波;;基于VB的OPC技術(shù)在電機(jī)故障監(jiān)測中的應(yīng)用[A];2006北京地區(qū)高校研究生學(xué)術(shù)交流會——通信與信息技術(shù)會議論文集(上)[C];2006年
5 葉曉明;;設(shè)備故障監(jiān)測與診斷技術(shù)在煉油廠煙氣發(fā)電機(jī)組中的應(yīng)用[A];設(shè)備監(jiān)測與診斷技術(shù)及其應(yīng)用——第十二屆全國設(shè)備監(jiān)測與診斷學(xué)術(shù)會議論文集[C];2005年
相關(guān)博士學(xué)位論文 前2條
1 趙彤;復(fù)雜信號相關(guān)法實現(xiàn)光纖接入網(wǎng)高精度故障監(jiān)測[D];太原理工大學(xué);2016年
2 劉小平;提升機(jī)故障智能診斷理論及應(yīng)用[D];中國礦業(yè)大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 沈才良;光伏電站故障監(jiān)測系統(tǒng)的設(shè)計與實現(xiàn)[D];哈爾濱工業(yè)大學(xué);2015年
2 王尚博;勵磁功率柜的故障監(jiān)測與診斷技術(shù)研究[D];河北工業(yè)大學(xué);2015年
3 黃雪冬;移動網(wǎng)絡(luò)汛期故障監(jiān)測系統(tǒng)的設(shè)計與開發(fā)[D];電子科技大學(xué);2015年
4 陳修哲;面向發(fā)酵過程故障監(jiān)測和質(zhì)量預(yù)報的研究與應(yīng)用[D];北京工業(yè)大學(xué);2011年
5 劉宇航;基于主成分分析的故障監(jiān)測方法及其應(yīng)用研究[D];華東理工大學(xué);2012年
6 張翔;分布式集群監(jiān)控平臺的故障監(jiān)測和管理[D];北京郵電大學(xué);2015年
7 徐向明;動力爐控制系統(tǒng)故障監(jiān)測和診斷系統(tǒng)的設(shè)計與實現(xiàn)[D];電子科技大學(xué);2012年
8 王勝紅;遠(yuǎn)程故障監(jiān)測、診斷、維護(hù)系統(tǒng)中的網(wǎng)絡(luò)數(shù)據(jù)傳輸安全研究[D];南京理工大學(xué);2003年
9 李強;風(fēng)力發(fā)電機(jī)局部放電故障監(jiān)測系統(tǒng)的研究[D];蘭州理工大學(xué);2013年
10 孫煒;網(wǎng)絡(luò)故障監(jiān)測與報修系統(tǒng)的設(shè)計[D];吉林大學(xué);2014年
本文編號:2161841
本文鏈接:http://www.lk138.cn/shoufeilunwen/xxkjbs/2161841.html