国产伦乱,一曲二曲欧美日韩,AV在线不卡免费在线不卡免费,搞91AV视频

當(dāng)前位置:主頁 > 碩博論文 > 信息類碩士論文 >

基于增量學(xué)習(xí)SVM分類算法的研究與應(yīng)用

發(fā)布時間:2023-10-12 04:03
  支持向量機(jī)(Support vector maehine,SVM)作為一種新興的統(tǒng)計學(xué)習(xí)算法,以其優(yōu)秀的理論基礎(chǔ)(結(jié)構(gòu)最小化理論、核空間理論)脫穎而出。它是在統(tǒng)計學(xué)習(xí)理論基礎(chǔ)上發(fā)展起來的一種通用學(xué)習(xí)機(jī)器,其關(guān)鍵的思想是利用核函數(shù)把一個復(fù)雜的分類任務(wù)通過核函數(shù)映射使之轉(zhuǎn)化成一個在高維特征空間中構(gòu)造線性分類超平面的問題。支持向量機(jī)由于其優(yōu)秀的學(xué)習(xí)性能,在分類問題中得到了廣泛的應(yīng)用。增量學(xué)習(xí)技術(shù)是一種得到廣泛應(yīng)用的智能化數(shù)據(jù)挖掘與知識發(fā)現(xiàn)技術(shù),它基于歷史的學(xué)習(xí)結(jié)果對新增加的數(shù)據(jù)進(jìn)行再學(xué)習(xí),使得學(xué)習(xí)具有一定的連續(xù)性。本文的主要工作為:首先,分析了支持向量機(jī)的理論基礎(chǔ)、基本概念、要解決的關(guān)鍵技術(shù)問題以及增量學(xué)習(xí)的基本概念。隨后,分析了幾種現(xiàn)有的支持向量機(jī)增量學(xué)習(xí)算法,通過分析可知:大部分都沒有充分考慮到新增樣本對初始樣本集中位于支持向量附近的非支持向量的影響,致使一些有用的歷史數(shù)據(jù)過早的被淘汰,從而嚴(yán)重影響分類的精度,通過引入邊界支持向量概念,提出了一種基于邊界支持向量的增量學(xué)習(xí)算法,實驗結(jié)果表明,基于邊界支持向量的增量學(xué)習(xí)SVM算法在訓(xùn)練速度上及訓(xùn)練精度上有一定的提高。另外,針對支持向量機(jī)的多...

【文章頁數(shù)】:57 頁

【學(xué)位級別】:碩士

【文章目錄】:
摘要
Abstract
1 緒論
    1.1 研究背景及意義
    1.2 國內(nèi)外的研究現(xiàn)狀
    1.3 本文的研究內(nèi)容及章節(jié)安排
        1.3.1 本文研究內(nèi)容
        1.3.2 本文章節(jié)安排
2 支持向量機(jī)理論
    2.1 支持向量機(jī)的基本理論
        2.1.1 經(jīng)驗風(fēng)險最小化
        2.1.2 VC維及推廣性界理論
        2.1.3 結(jié)構(gòu)風(fēng)險最小化
    2.2 支持向量機(jī)原理
        2.2.1 最優(yōu)分類面
        2.2.2 廣義最優(yōu)分類面
        2.2.3 線性支持向量機(jī)
        2.2.4 非線性支持向量機(jī)
    2.3 支持向量機(jī)模型的建立
        2.3.1 訓(xùn)練集的選擇
        2.3.2 訓(xùn)練特征的選擇
        2.3.3 核函數(shù)的選擇
        2.3.4 模型參數(shù)的選擇
    2.4 增量學(xué)習(xí)SVM算法
        2.4.1 增量學(xué)習(xí)基本思想
        2.4.2 KKT條件和支持向量
        2.4.3 增量學(xué)習(xí)中向量集的變化
    2.5 本章小結(jié)
3 邊界支持向量增量學(xué)習(xí)SVM算法的研究
    3.1 增量學(xué)習(xí)SVM算法分析
        3.1.1 經(jīng)典增量學(xué)習(xí)SVM算法—Batch SVM
        3.1.2 幾種改進(jìn)型的增量學(xué)習(xí)SVM算法
    3.2 邊界支持向量的分析
        3.2.1 邊界支持向量基本概念
        3.2.2 線性可分邊界支持向量的提取
        3.2.3 線性不可分邊界支持向量的提取
    3.3 邊界支持向量增量學(xué)習(xí)SVM算法
    3.4 實驗結(jié)果及分析
    3.5 本章小結(jié)
4 SVM多分類增量算法的研究
    4.1 多分類SVM及特點分析
    4.2 SVM多分類增量算法分析
        4.2.1 超球間重疊分析
        4.2.2 增量算法分析
    4.3 新的超球結(jié)構(gòu)增量學(xué)習(xí)算法
    4.4 實驗結(jié)果
    4.5 本章小結(jié)
5 基于增量學(xué)習(xí)SVM文本分類系統(tǒng)的設(shè)計與實現(xiàn)
    5.1 基于SVM的文本分類算法分析
        5.1.1 文本分類介紹
        5.1.2 基于SVM的文本分類算法
    5.2 總體設(shè)計
    5.3 系統(tǒng)的設(shè)計與實現(xiàn)
        5.3.1 網(wǎng)頁爬取設(shè)計
        5.3.2 文本預(yù)處理
        5.3.3 建立文檔表示模型
        5.3.4 文本分類
        5.3.5 數(shù)據(jù)挖掘結(jié)果
    5.4 本章小結(jié)
6 總結(jié)與展望
    6.1 論文總結(jié)
    6.2 研究展望
參考文獻(xiàn)
致謝
攻讀碩士學(xué)位期間發(fā)表的論文及所取得的研究成果



本文編號:3853415

資料下載
論文發(fā)表

本文鏈接:http://lk138.cn/shoufeilunwen/xixikjs/3853415.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶3b947***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
国产乱码精品一二| 欧美一区免赞图片视频在线| 日韩版视频欧美| 日韩无码AV片一区二区三区| 一二三四五免费看黄片| 欧美v亚洲v日韩v久久久粉嫩 | 欧美熟妇乱xxxxx| 后入上海少妇| 久久久综合视频在线| 色久综合16p| 亚洲AV色精品一区二区| 精品无码国产一区二区三区5安| 亚洲国产乱码在线| 图片区视频区一区二区| 黄色片一级网站欧美| 超碰社区二区| 啊好湿好多水视频| 国产亚洲殴洲精品| 欧美亚洲熟妇fat| 欧美成人午夜天堂一区久久久| 美女黄av| 婷婷五月福利色区| 人人操这里只有精品| 成人久久久精品欧美| 99久久国产亚洲精品美女久久| 韩国一级毛片久久久| 欧美香蕉人综合| 日韩AV二区三区不卡中文字幕| 61国际欧美一级在线| 国产欧美日韩区一区二小记得| 日本黄色超碰网站| 美女毛片a级久久| 谷原希美邻人妻在线| 女技师按摩国产在线播放91| 亚洲综合一区第二页19p| 伊人久久 99| 日韩 国产 欧美 中文| 又黄又大成人影院| 亚洲理论中文字幕| 深爱五月天精品人妻| 不卡欧美在线国产日韩|