基于聲發(fā)射的球軸承疲勞演化特征提取研究
[Abstract]:Rolling bearing is one of the key components in the industrial field. Peeling is an important failure form of rolling bearing. It usually forms a crack core at the weak point below the surface by alternating stress between the roller and the raceway surface, and then the crack expands to the material surface to form pitting corrosion and peeling. Whether the enterprise can reasonably formulate equipment maintenance, maintenance, spare parts, spare parts plan to cope with unexpected situations, avoid economic losses, major accidents and even casualties, etc., and can reasonably use the service life of rolling bearings, fully tap their working potential and avoid waste. Therefore, mastering the fatigue evolution process of rolling bearings will have In addition, the accurate fatigue evolution data is an important data source for the theory of performance degradation assessment and life prediction of rolling bearings, and it is also an accurate guarantee for the calculation results. The classical state monitoring and fault diagnosis technology based on vibration can only obtain the damaged state of the surface, which has certain limitations for early fatigue detection. In the early 1950s, the pioneering work of Kaiser, a German scholar, promoted the birth and development of modern acoustic emission technology, and gradually became a powerful tool to obtain early fatigue damage information of rolling bearings. Although AE data of bearing can accurately reflect its fatigue evolution process, the time cost is high, and the existing fatigue test schemes have complex transmission paths and large signal attenuation. The process method usually adopts trend analysis of 3-5 traditional AE indexes, which has many shortcomings, such as manual determination of fixed threshold voltage and easy introduction of subjective disturbance. A few features are not enough to fully reflect the fatigue state of rolling bearings, and the research on the relationship between characteristics and damage is not deep enough. The redundancy and irrelevance between features will interfere with the acquisition of fatigue process information. Moreover, different characteristics have different sensitivities. Evolutionary information is unevenly distributed among the features, requiring a certain amount of professional knowledge and experience. Effective extraction of fatigue evolution characteristics of rolling bearings is the key to solve the above problems. This dissertation is based on the National Natural Science Foundation project "Research on pitting fatigue life estimation of ball bearings based on acoustic emission and numerical model" (item number: 51465022), and the National Natural Science Foundation of China (NSFC), "Undetermined time-varying noise field of underwater moving targets" Blind Extraction Model and Its Algorithms Research (Project Number: 51265018) and other funding, based on acoustic emission technology, around the problem of effective extraction of fatigue evolution characteristic information in the whole life stage of rolling bearings from non-destructive to peeling failure, a research route combining theoretical research with experimental verification was established preliminarily based on acoustic emission technology. The extraction method framework of rolling bearing contact fatigue evolution information mainly includes the following contents: (1) Combining with rolling bearing condition monitoring theory and engineering requirements, this paper reviews the related research methods of rolling bearing fatigue, acoustic emission theory and acoustic emission monitoring technology, noise reduction technology, feature evaluation and feature extraction technology at home and abroad. (2) The shortcomings of traditional AE monitoring indexes are analyzed, and an AE monitoring index based on floating threshold and averaging is given. The trend analysis of multiple indexes is carried out. The analysis shows that the improved AE index can give better fatigue evolution information. A new type of rolling bearing fatigue test bench is designed, which provides a test and verification platform for subsequent theoretical research. (3) Aiming at the problem of easy mixing noise in the acoustic emission signals collected, in-depth study is carried out. The noise sources and characteristics of AE signals are analyzed and the conventional processing methods are given. For the noise which is difficult to be solved by conventional processing, a weighted threshold wavelet packet denoising algorithm based on quadratic correlation theory is proposed from the angle of the similarity of the autocorrelation form between the noise in AE signals and the introduced noise, and the simulation and implementation are carried out. Experimental study on acoustic emission signals of thrust ball bearings shows that the method can suppress the noise of acoustic emission signals, improve the signal-to-noise ratio and stabilize the acoustic emission signals. The impact of acoustic emission signals after noise reduction is obvious. (4) The shortcomings of existing distance evaluation methods are analyzed. On the basis of traditional distance evaluation method, a distance evaluation method based on position compensation coefficient is proposed to improve the accuracy and stability of target recognition. Experimental results show that the sensitive feature set selected by this method has higher damage identification. Fifthly, based on the above algorithm, a fatigue evolution information extraction algorithm based on Improved Particle Swarm Optimization (PSO) kernel entropy component analysis is proposed, which covers the least feature components and the most effective information. A quadratic feature fusion algorithm is proposed to fuse the fused features to extract the evolution information of rolling bearings more efficiently. The results of AE data analysis show that the improved kernel entropy analysis can effectively identify the fatigue evolution stage of rolling bearings and the quadratic fusion feature extraction algorithm can converge greatly. The fatigue evolution information from each dimension feature is gathered, and the fatigue process of rolling bearings can be easily and effectively characterized by a single secondary fusion feature.
【學(xué)位授予單位】:昆明理工大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:TH133.33
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 胥良;姜澤凡;李前銀;;黃龍鈣華景觀演化特征及保護(hù)措施探討[J];地質(zhì)災(zāi)害與環(huán)境保護(hù);2007年04期
2 樊曉一;;滑坡位移多重分形特征與滑坡演化預(yù)測[J];巖土力學(xué);2011年06期
3 肖進(jìn);;折線型岸坡的演化特征與防治加固[J];建筑科學(xué);2013年05期
4 李仕雄,姚令侃,蔣良維;松散邊坡演化特征及其應(yīng)用[J];四川大學(xué)學(xué)報(工程科學(xué)版);2004年02期
5 梅應(yīng)堂;;長江三峽工程地區(qū)構(gòu)造變動發(fā)展及演化特征[J];人民長江;1992年11期
6 劉雷艷;安裕倫;;畢節(jié)石灰?guī)r地區(qū)不同土地利用的景觀演化特征分析[J];貴州師范大學(xué)學(xué)報(自然科學(xué)版);2011年03期
7 王之田,張樹文,孫樹人,李忠軍;大興安嶺東南緣成礦集中區(qū)成礦演化特征與找礦潛力[J];有色金屬礦產(chǎn)與勘查;1997年S1期
8 辜建軍;;某井場基坑變形時空演化特征的底摩擦試驗[J];山西建筑;2014年14期
9 劉善軍;吳立新;張艷博;李國良;陳群龍;;拐折非連通斷層加載失穩(wěn)的熱輻射演化特征[J];巖石力學(xué)與工程學(xué)報;2009年S2期
10 段玲玲;徐國志;劉泰峰;;邯邢鐵礦區(qū)土壤與玉米中重金屬的演化特征[J];科技視界;2014年08期
相關(guān)會議論文 前10條
1 劉寶明;張漢泉;夏斌;;南沙海域斷裂演化特征及其與南海海盆的演化關(guān)系[A];中國地球物理.2003——中國地球物理學(xué)會第十九屆年會論文集[C];2003年
2 朱衛(wèi)平;劉英會;;武夷—東海古陸存在的證據(jù)及其早期演化特征[A];中國地球物理·2009[C];2009年
3 尹觀;范曉;;稻城溫泉水的同位素季節(jié)性效應(yīng)及氘過量參數(shù)值演化特征[A];中國礦物巖石地球化學(xué)學(xué)會第九屆學(xué)術(shù)年會論文摘要集[C];2003年
4 洪漢凈;汪一鵬;;我國大陸地殼變形的平均圖象與演化特征[A];中國地震學(xué)會第六次學(xué)術(shù)大會論文摘要集[C];1996年
5 張元生;魏從信;張璇;郭曉;;2013年4月16日伊朗-巴基斯坦交界7.8級地震的熱異常特征[A];中國地震學(xué)會地震電磁學(xué)專業(yè)委員會2013年年會論文集[C];2013年
6 代鴻章;陳翠華;顧雪祥;;云南者桑金礦床鉛同位素演化特征及其指示意義[A];中國礦物巖石地球化學(xué)學(xué)會第14屆學(xué)術(shù)年會論文摘要專輯[C];2013年
7 耿斌;;創(chuàng)意產(chǎn)業(yè)集聚區(qū)空間演化特征研究——以上海市為例[A];生態(tài)文明視角下的城鄉(xiāng)規(guī)劃——2008中國城市規(guī)劃年會論文集[C];2008年
8 焦淑沛;;塔里木—柴達(dá)木地洼區(qū)的地史演化特征及其歸屬問題[A];青藏高原地質(zhì)文集(15)——巖石、構(gòu)造地質(zhì)[C];1983年
9 郭彥雙;馬瑾;卓燕群;;平直斷層失穩(wěn)前應(yīng)變場演化特征的實驗研究[A];中國地震學(xué)會第14次學(xué)術(shù)大會專題[C];2012年
10 劉云;樊威;閆哲;程旖婕;;納米全球合作創(chuàng)新網(wǎng)絡(luò)結(jié)構(gòu)與演化特征分析[A];第十屆中國科技政策與管理學(xué)術(shù)年會論文集——分8:科學(xué)學(xué)與政策科學(xué)理論方法[C];2014年
相關(guān)博士學(xué)位論文 前3條
1 王曉娟;中國冬季區(qū)域性低溫事件的識別、時空演化特征及其與歐亞阻塞流型的聯(lián)系研究[D];蘭州大學(xué);2015年
2 張建國;強震前電磁輻射異常演化特征及其機理探索研究[D];中國科學(xué)技術(shù)大學(xué);2017年
3 王之海;基于聲發(fā)射的球軸承疲勞演化特征提取研究[D];昆明理工大學(xué);2017年
相關(guān)碩士學(xué)位論文 前9條
1 謝雷;宿遷市更新世晚期以來的色度指標(biāo)與氣候演化特征[D];中國地質(zhì)大學(xué)(北京);2015年
2 邵瑩斐;轉(zhuǎn)型期徽州傳統(tǒng)濱河聚落空間演化特征及動力機制研究[D];安徽建筑大學(xué);2015年
3 姬新強;韓城礦區(qū)構(gòu)造煤分子結(jié)構(gòu)演化特征[D];太原理工大學(xué);2016年
4 喬雨;吉林省中部高平原區(qū)地下水時空演化特征研究[D];吉林大學(xué);2016年
5 趙博;平莊—馬廠盆地地質(zhì)構(gòu)造及演化特征[D];遼寧工程技術(shù)大學(xué);2014年
6 劉嘯虎;準(zhǔn)噶爾盆地克拉美麗山前構(gòu)造及演化特征分析研究[D];西南石油大學(xué);2016年
7 張國強;閃電首次回?fù)暨^程中通道溫度與電導(dǎo)率演化特征的研究[D];西北師范大學(xué);2016年
8 李寧;采場壓力拱演化特征及失穩(wěn)機理分析[D];燕山大學(xué);2014年
9 王晶;麥蓋提斜坡瑪南斷裂帶演化特征及其油氣意義[D];成都理工大學(xué);2012年
,本文編號:2235501
本文鏈接:http://www.lk138.cn/shoufeilunwen/gckjbs/2235501.html