相變微膠囊儲(chǔ)能過(guò)程傳熱與流動(dòng)特性研究
[Abstract]:With the rapid development of global industry and economy, more and more countries are demanding energy, the consumption of traditional non-renewable energy such as coal and oil is increasing, energy shortage and environmental pollution are becoming increasingly serious. Therefore, it is urgent to save energy, reduce emissions and improve energy efficiency. Phase change microcapsules can be prepared by encapsulating phase change energy storage materials with microcapsule technology. However, most of the core materials of phase change microcapsules are organic phase change materials, such as paraffin wax. Their thermal conductivity is generally low, resulting in low thermal energy storage and transport efficiency, which limits the practical application of phase change energy storage technology. The main research contents and conclusions are as follows: (1) Paraffin/melamine resin was prepared by using nano-copper, graphene and expanded graphite as high thermal conductive materials. The heat transfer enhancement of phase change microcapsules was studied, and the effects of the kinds and mass fraction of high thermal conductivity materials on the thermal properties and heat storage/release properties of phase change microcapsules were analyzed. The results showed that the thermal conductivity of phase change microcapsules increased by 8.72%, 28.27% and 39.62% respectively when the contents of nano-copper, graphene and expanded graphite were 2.5 wt%. When the content of expanded graphite was 2.5 wt.%, the thermal storage and release efficiency of expanded graphite / micro EPCM composites were 14.98% and 26.63% higher than that of phase change microcapsules, respectively. (2) Phase change microcapsule suspensions with different mass fractions of microcapsules were prepared as latent functional thermal fluids, and their thermophysical properties and heat transfer and flow characteristics in tubes were studied. The density and thermal conductivity of the fluid decrease with the increase of the content of phase change microcapsules, while the latent heat increases with the increase of the mass fraction of phase change microcapsules. The results show that the convective heat transfer coefficient of latent functional heat fluids increases with the increase of the content of phase change microcapsules. When the content of phase change microcapsules is 5 wt.% and 10 wt.%, the convective heat transfer system is established. The number is about 2 times and 3 times that of the base solution. (3) with seven hydrated Magnesium Sulfate as core material and urea formaldehyde resin as wall material, phase change microcapsules were prepared by emulsion polymerization. The micromorphology and physical parameters of phase change microcapsules prepared under different technological conditions were studied. When the content of emulsifier was 0.5 g, the microcapsules showed regular spherical structure, smooth and compact surface, and the particle size was relatively uniform. At this time, the average diameter of microcapsules was 34.99 micron, and the coating rate was 36.5%. (4) Sodium thiosulfate pentahydrate was used as core material, polystyrene as wall material, and solvent evaporation method was used to prepare microcapsules. The phase change microcapsules were prepared. The morphology and thermal stability of the microcapsules prepared under different emulsifier content and stirring rate were analyzed. The results showed that the phase change microcapsules had regular spherical structure and smooth and compact surface. With the increase of emulsifier content, the phase transition temperature of microcapsules decreases, while the latent heat of microcapsules increases first and then decreases with the increase of emulsifier content. 4%. (5) Phase change microcapsules were prepared by sol-gel method with sodium thiosulfate pentahydrate as core material and silica as wall material. When the mass ratio of core material, wall material and emulsifier is 1:0.4:0.04, the phase change microcapsules have regular spherical structure, smooth and compact surface, and most uniform particle size distribution. The latent heat of phase change increases gradually. The maximum latent heat of phase change microcapsules is 199.47kJ/kg and the coating rate is 94.65%. The supercooling and thermal conductivity of sodium thiosulfate pentahydrate coated with silica are improved, and the thermal stability is also improved obviously. The leakage problem caused by the flow of core material after melting is solved, thus the coating rate is prolonged. In summary, this paper focuses on the enhanced heat transfer of phase change microcapsules, the flow and heat transfer of latent functional heat fluids, the preparation and thermophysical properties analysis of phase change microcapsules of inorganic hydrate salts. It has a certain reference value in strengthening the preparation of new inorganic salt phase change microcapsule materials.
【學(xué)位授予單位】:中國(guó)礦業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:TK124
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 吳嘉峰;郝英立;施明恒;;相變微膠囊功能流體融化狀態(tài)的數(shù)值模擬[J];工程熱物理學(xué)報(bào);2007年05期
2 魯進(jìn)利;郝英立;;單個(gè)相變微膠囊在湍流中的運(yùn)動(dòng)與融化特性[J];熱科學(xué)與技術(shù);2007年04期
3 馬保國(guó);金磊;蹇守衛(wèi);;石蠟相變微膠囊的制備及在建材中的應(yīng)用[J];建材世界;2009年01期
4 楊驍博;袁衛(wèi)星;姜軍;;不同溫區(qū)相變微膠囊的制備及研究進(jìn)展[J];制冷;2009年04期
5 李鳳志;吳成云;李毅;;相變微膠囊半徑及含量對(duì)織物熱濕性能影響數(shù)值研究[J];應(yīng)用基礎(chǔ)與工程科學(xué)學(xué)報(bào);2008年05期
6 李鳳志;朱云飛;王鵬飛;曹業(yè)玲;;織物-多種相變微膠囊復(fù)合材料熱特性數(shù)值模擬[J];南京航空航天大學(xué)學(xué)報(bào);2009年04期
7 陳斌嬌;王馨;曾若浪;張寅平;狄洪發(fā);;相變微膠囊懸浮液層流強(qiáng)迫對(duì)流換熱實(shí)驗(yàn)研究[J];太陽(yáng)能學(xué)報(bào);2009年08期
8 吳嘉峰;郝英立;施明恒;;相變微膠囊功能流體相變區(qū)間的影響因素和變化趨勢(shì)分析[J];熱科學(xué)與技術(shù);2006年04期
9 ;相變微膠囊材料制造技術(shù)[J];軍民兩用技術(shù)與產(chǎn)品;2013年03期
10 鄭興華;邱琳;祝捷;蘇國(guó)萍;唐大偉;;相變微膠囊的熱導(dǎo)率測(cè)量[J];工程熱物理學(xué)報(bào);2012年03期
相關(guān)會(huì)議論文 前6條
1 閔潔;壽晨燕;朱泉;潘建君;;相變微膠囊的制備及其相變性能的研究[A];第一屆廣東紡織助劑行業(yè)年會(huì)論文集[C];2009年
2 曾若浪;陳斌嬌;王馨;張寅平;王懿;狄洪發(fā);;相變微膠囊及其懸浮液的兩種潛熱測(cè)量方法[A];制冷空調(diào)新技術(shù)進(jìn)展——第四屆全國(guó)制冷空調(diào)新技術(shù)研討會(huì)論文集[C];2006年
3 任曉亮;任麗;王立新;;環(huán)保節(jié)能型相變微膠囊的制備及應(yīng)用[A];2004年中國(guó)材料研討會(huì)論文摘要集[C];2004年
4 葉星;陳艷;陳大柱;;耐黃變聚脲包覆正十八烷相變微膠囊的制備和儲(chǔ)熱性能[A];2012年全國(guó)高分子材料科學(xué)與工程研討會(huì)學(xué)術(shù)論文集(下冊(cè))[C];2012年
5 任曉亮;王立新;任麗;;聚脲型相變微膠囊的制備[A];2004年材料科學(xué)與工程新進(jìn)展[C];2004年
6 陳艷;歐陽(yáng)星;葉星;陳雪飛;張海玲;陳大柱;;環(huán)氧樹脂/相變微膠囊/CNT復(fù)合材料的制備及動(dòng)態(tài)力學(xué)性能[A];2013年全國(guó)高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集——主題J:高分子復(fù)合體系[C];2013年
相關(guān)博士學(xué)位論文 前1條
1 劉臣臻;相變微膠囊儲(chǔ)能過(guò)程傳熱與流動(dòng)特性研究[D];中國(guó)礦業(yè)大學(xué);2017年
相關(guān)碩士學(xué)位論文 前10條
1 張健;潛熱型功能流體儲(chǔ)熱特性實(shí)驗(yàn)與數(shù)值模擬研究[D];中國(guó)科學(xué)院研究生院(工程熱物理研究所);2015年
2 劉欽礦;三聚氰胺改性脲醛樹脂相變微膠囊的制備及性能分析[D];上海應(yīng)用技術(shù)學(xué)院;2015年
3 賀珊珊;密胺樹脂及聚脲壁材相變微膠囊的制備與表征[D];哈爾濱工業(yè)大學(xué);2015年
4 李婷婷;單分散Bi-Ga相變微膠囊制備及熱循環(huán)穩(wěn)定性[D];大連理工大學(xué);2015年
5 于佳利;添加相變微膠囊復(fù)合工質(zhì)的傳熱性能研究[D];石家莊鐵道大學(xué);2015年
6 彭佩;聚脲相變微膠囊的制備及其應(yīng)用性能研究[D];東華大學(xué);2016年
7 樓櫻紅;溶膠—凝膠法制備相變微膠囊及其在織物上的應(yīng)用[D];東華大學(xué);2013年
8 惠龍;導(dǎo)熱增強(qiáng)型相變微膠囊的制備與應(yīng)用[D];東南大學(xué);2015年
9 李俊;微流控技術(shù)制備相變微膠囊的研究[D];廣東工業(yè)大學(xué);2016年
10 史汝琨;基于相變微膠囊涂層的智能調(diào)溫織物的制備與性能研究[D];天津工業(yè)大學(xué);2016年
,本文編號(hào):2218533
本文鏈接:http://www.lk138.cn/shoufeilunwen/gckjbs/2218533.html