基于芳醚型聚苯并咪唑的高溫質子交換膜的制備及性能研究
[Abstract]:In the past few decades, proton exchange membrane fuel cell (PEMFC) as a highly efficient and environmentally friendly electrochemical energy conversion device has attracted wide attention of scientists. In recent years, with the deepening of research, the development of PEMFC which can work in high temperature and low humidity environment has become a research hotspot. High temperature proton exchange membrane fuel cell (HT-PEMFC) operated at 100-200 C has many advantages over membrane fuel cell (100 C). For example, it improves the tolerance of catalyst to CO, improves the efficiency of catalyst and simplifies the water/heat management. Polybenzimidazole (PBI) has excellent mechanical properties and thermal stability. The proton conductivity of PBI itself is very low, only 10-9 m S. cm-1, and it can not be used as an independent solid electrolyte. Phosphoric acid (PA) is a good electrolyte with high thermal stability, it is at 200 C. In the 1990s, Wainright et al. first doped phosphoric acid into PBI to prepare phosphoric acid-doped polybenzimidazole (PA-PBI) proton exchange membranes, which exhibited many excellent performances at high temperatures. This landmark study, as well as many subsequent related studies, led to PA-PBI films one by one. In the past two decades, the most widely studied PBI substrates have been commercialized poly [2,2'-m-(phenylene)-5,5'-dibenzimidazole] (m-PBI). For m-PBI, the strong hydrogen bonding between imidazole groups leads to poor solubility in order to ensure uniformity of the films. PA-PBI films are prepared by PBI with relatively low linear molecular weight (23-40 K Da, corresponding to the intrinsic viscosity of 0.5-1.0 D L.g-1). However, the mechanical properties of the polymer films are relatively poor due to the lower molecular weight, which only allows the PBI films to obtain a lower phosphoric acid doping amount (usually repeated per mole of PBI). The proton conductivity (100 m S cm 1) is low due to the doping of 6-10 moles of phosphoric acid with the unit. Therefore, researchers have adopted a variety of methods to improve the performance of the membrane, including grafting, crosslinking, inorganic doping, sol-gel method and synthesis of new PBI materials. The PA-PBI high-temperature proton exchange membranes still face several key challenges if they are to be commercialized, such as higher proton conductivity, better mechanical properties and more stable phosphoric acid retention capacity. High conductivity PA-PBI films are prepared by phosphoric acid doping of the films. However, high ADL leads to large size swelling, which correspondingly reduces the mechanical strength and durability of the films. PBI membrane materials with good dimensional stability and mechanical stability and high acid retention ability under high ADL or high proton conductivity are the key problems to be solved in the study of PA-PBI high temperature proton exchange membrane. Two kinds of high molecular weight aryl ether PBI (Ph-PBI and ME-PBI) containing flexible ether bonds and asymmetric large-volume side groups (phenyl and methyl phenyl) were synthesized and the corresponding phosphoric acid doped films were prepared. Compared with OPBI films, Ph-PBI and Me-PBI films exhibit different phosphoric acid doping behaviors, higher phosphoric acid doping levels, better dimensional and mechanical stability, higher proton conductivity and better fuel cell performance. Among them, the PA-PBI (Ph-PBI) obtained by phosphoric acid doping of Ph-PBI at 160 C for 72 h has higher proton conductivity and better fuel cell performance. - 72) The proton conductivity of the membrane is 138 m S. cm - 1, the volume swelling is only 188%, and the mechanical strength of the membrane is 9.7 MPa. Ph - 72. The maximum power density of the H2 / O2 fuel cell is 279 m W. cm - 2 without humidification. Based on the Ph - PBI with excellent size and mechanical stability synthesized in the previous part of the work, in order to make progress In the second part of the study, we grafted 2-chloromethylbenzimidazole onto Ph-PBI and prepared a series of polybenzimidazole films with different grafting degrees. The introduction of additional imidazole groups increased the basic groups on the chain of Ph-PBI and increased the ratio of Ph-PBI film to phosphoric acid. When the grafting degree is 20%, the phosphoric acid doping content is 341%, the conductivity of PBI film is 212 m S. cm - 1, and the tensile strength is 6.5 MPa in dry state. In the third part, in order to improve both proton conductivity and mechanical strength of PA-PBI film, we designed and synthesized a novel crosslinking agent 2,2'-bis (chloromethyl) -5,5'-biphenyl containing imidazole group on the basis of Ph-PBI. A series of cross-linked PBI thin films with different crosslinking degrees were prepared. The cross-linked thin films exhibited better size and mechanical stability than the original Ph-PBI films and the grafted thin films in the second part at high phosphoric acid doping levels, resulting in higher proton conductivity and better fuel cell performance. The mechanical strength of the cross-linked membranes is above 10 MPa. When the degree of cross-linking is 30%, the ADL of the cross-linked membranes is 354%, and the conductivity of the cross-linked membranes is 253 m S. cm-1 under anhydrous condition. The maximum power density of the H2/O2 fuel cell is 533 m W. cm-2 under 160 ~C and no humidification condition. In the last part of the study, in order to enhance the protection of PA-PBI membrane to phosphoric acid. The acidic polyhydroxy nano-Si O2 particles were introduced into the crosslinked PBI films prepared in the previous part to prepare inorganic-organic composite proton exchange membranes (Si O2/PBI). The cross-section morphology of the composite films was studied by scanning electron microscopy (SEM). The results showed that the Si O2 particles were uniformly dispersed in the crosslinked PBI films. The phosphoric acid doping level of the SiO 2/PBI composite membrane with 2 wt% SiO 2 content is 350%, and its proton conductivity is 244 m S cm 1 at 200 C and anhydrous condition. The maximum power density of the H2/O 2 fuel cell with this membrane is 497 m W cm 2 at 160 C and without humidification. With the increase of the nano Si 2 content, the acid of the PBI membrane remains. In summary, we have prepared aryl ether PBI films with excellent size and mechanical stability from the point of view of the structure design of PBI matrix. By introducing more imidazole groups and cross-linking membranes, the conductivity and mechanical strength of PBI films have been further improved, and by Inorganic-Organic methods. A series of PA-PBI high temperature proton exchange membranes with excellent comprehensive properties were obtained.
【學位授予單位】:吉林大學
【學位級別】:博士
【學位授予年份】:2017
【分類號】:TQ425.236
【相似文獻】
相關期刊論文 前10條
1 崔錚;相艷;張濤;;硫酸交聯(lián)殼聚糖膜質子傳導行為的研究[J];化學學報;2007年17期
2 付彪;劉海燕;張甄;王智強;張中標;;用于質子交換膜的高質子傳導率聚合物研究進展[J];精細化工中間體;2013年01期
3 詹文豹;;BaCeO_3氫傳感器[J];稀土信息;1992年08期
4 樊孝紅;于非;周震濤;;磺化聚醚醚酮/二氧化硅/磷鎢酸復合膜的質子傳導率與阻醇性[J];合成化學;2007年S1期
5 譚少博;楊慶浩;張志成;;P(VDF-co-TrFE-co-CTFE)-g-SPS共聚物的合成表征[J];高分子學報;2010年11期
6 漆志剛;宮琛亮;梁宇;李輝;張樹江;李彥鋒;;中溫質子交換膜燃料電池高質子傳導率磺化芳香族聚合物膜[J];化學進展;2013年12期
7 馬麗;程海龍;徐晶美;王哲;;磺化聚芳醚酮砜/聚芳醚砜VA二唑復合型質子交換膜的制備與性能[J];高等學;瘜W學報;2014年03期
8 李衛(wèi)東;徐紅;趙炯心;;SPSF/PWA/SiO_2復合質子交換膜的制備與性能[J];東華大學學報(自然科學版);2009年02期
9 王哲;高洪成;趙成吉;常虹;張會軒;那輝;;磺化聚芳醚酮砜/ZrO_2復合型質子交換膜的制備與性能[J];高等學;瘜W學報;2011年08期
10 張妮;劉惠玲;李君敬;夏至;王向宇;;用于燃料電池的磺化聚芳醚砜質子交換膜材料的直接合成與性能研究[J];高分子學報;2009年04期
相關會議論文 前5條
1 樊孝紅;于非;周震濤;;磺化聚醚醚酮/二氧化硅/磷鎢酸復合膜的質子傳導率與阻醇性[A];第二屆中國儲能與動力電池及其關鍵材料學術研討與技術交流會論文集[C];2007年
2 徐晶美;張會軒;王哲;;用于直接甲醇燃料電池中的磺化聚芳醚酮砜膜的制備與性能研究[A];中國化學會第29屆學術年會摘要集——第23分會:電催化與潔凈能源電化學轉化[C];2014年
3 劉新才;李智亮;張萬金;王策;;SPEEK/PAA復合膜材料的制備與電池性能研究[A];中國化學會第27屆學術年會第05分會場摘要集[C];2010年
4 樊孝紅;于非;周震濤;;磺化聚醚醚酮/二氧化硅/磷鎢酸導電復合膜的制備[A];第二屆中國儲能與動力電池及其關鍵材料學術研討與技術交流會論文集[C];2007年
5 孫飛;楊士勇;范琳;;新型含氟磺化聚酰亞胺質子交換膜的合成與性能研究[A];2009年全國高分子學術論文報告會論文摘要集(上冊)[C];2009年
相關博士學位論文 前7條
1 李貴彬;聚合物電解質膜材料的分子設計及結構與性能的研究[D];吉林大學;2016年
2 李曉白;基于芳醚型聚苯并咪唑的高溫質子交換膜的制備及性能研究[D];吉林大學;2017年
3 李明昱;交聯(lián)型聚合物電解質膜的結構設計與性能研究[D];吉林大學;2015年
4 王雙;新型磷酸摻雜交聯(lián)型聚苯并咪唑高溫質子交換膜材料的制備與性能研究[D];吉林大學;2014年
5 唐群;稀土金屬有機框架的合成、結構及其性能研究[D];東北師范大學;2014年
6 倪婧;高性能聚合物電解質膜材料的制備和性能研究[D];吉林大學;2012年
7 付鐵柱;直接甲醇燃料電池用磺化聚醚醚酮膜材料的制備與研究[D];吉林大學;2009年
相關碩士學位論文 前10條
1 耿青;直接甲醇燃料電池用新型有機無機復合膜的制備與性能研究[D];武漢紡織大學;2015年
2 李真真;新型改性PBI質子交換膜的制備及性能研究[D];大連理工大學;2015年
3 漆志剛;酸堿側鏈型芳香族質子交換膜的制備及性能研究[D];蘭州大學;2015年
4 韓海蘭;新型交聯(lián)質子交換膜的制備與性能研究[D];長春工業(yè)大學;2016年
5 和亞昆;酸堿對增強納米纖維復合質子交換膜的制備與結構調控[D];鄭州大學;2016年
6 張濤;離子液體填充質子交換膜的制備及性能研究[D];鄭州大學;2014年
7 陳繼威;高溫低濕離子液體基聚芳醚質子交換膜的研究[D];大連理工大學;2010年
8 楊華軍;聚苯醚基有機無機復合質子交換膜的制備與性能研究[D];暨南大學;2013年
9 李琳;SPPESK/PWA及其表面改性質子交換膜的制備[D];大連理工大學;2013年
10 程康;新型1H-1, 2,3三氮唑類化合物的合成研究[D];鄭州大學;2010年
,本文編號:2186322
本文鏈接:http://www.lk138.cn/shoufeilunwen/gckjbs/2186322.html