5-氨基四氮唑類固體推進(jìn)劑熱解動(dòng)力學(xué)及燃燒特性研究
[Abstract]:Solid propelled fire extinguishing technology (SPGG) has received extensive attention for its excellent characteristics, such as large amount of inert gas, storage at normal pressure, and the use of liquid fire extinguishing agent to release fire extinguishing agent according to demand. SPGG has become a hot and promising alternative fire extinguishing technology for Halon. However, SPGG fire extinguishing assembly The main components, 5- amino tetrazolium / strontium nitrate (5AT/Sr (N03) 2) propellant, have high gas production temperature and high burning rate affected by pressure, which weaken the fire extinguishing efficiency of the SPGG fire extinguisher and restrict its popularization and use. Therefore, the propellant composed of 5- amino tetrazolium and its strontium nitrate with high nitrogen energetic compound and the propellant composed of strontium nitrate are studied in this paper. The effect of particle size, catalyst and other variables on the combustion performance of 5AT/Sr (N03) 2 propellant was investigated by adding positive and negative catalysts. The effect mechanism of various variables on the combustion performance of solid propellants was revealed from the point of view of pyrolysis mechanism. A new type of 5AT/Sr (N03) with low combustion temperature, fast burning rate and low burning rate pressure index was explored. ) 2 solid propellant. First, in this paper, a high nitrogen energetic compound 5AT was used as the research object to explore the pyrolysis characteristics of 5AT and the mechanism of pyrolysis reaction. On the one hand, the 5AT samples of four kinds of particle sizes were prepared. The thermal stability of 5AT samples with different particle sizes was analyzed by thermogravimetry and heat flow technique, and the resistance of 5AT to heat was found with smaller particle size. The worse the force, the influence mechanism of particle size on 5AT pyrolysis is revealed by means of specific surface area and scanning electron microscope. It is presumed that it may be caused by the formation of higher surface energy and faster heat and mass transfer rate by the small particle size. It is possible to choose the 5AT particle size range easily and easily to be operated from four kinds of particle sizes. The pyrolysis of 5AT samples belongs to the Di diffusion model. On the other hand, the catalytic mechanism of three different nano transition metal oxides (nanoscale iron oxide, nano cuprous oxide, nanoscale oxide) catalyst for the thermal decomposition of 5AT is studied, and the transition from thermogravimetry, heat flow, Fourier infrared, mass spectrum, specific surface area test and electron microscope scanning are found. The presence of metal oxides will accelerate the pyrolysis rate of 5AT because the addition of transition metal oxides hinders the combination of CN, but accelerates the fracture of the CN bond. In summary, the particle size is smaller, and the 5AT with transition metal oxide is more sensitive, and more safety is needed in the process of production, transportation and storage. Secondly, using 5AT/Sr (NO3) 2 propellant as the research object, the pyrolysis mechanism of propellant was investigated by TG mass spectrometry combined with TG mass spectrometry. The pyrolysis of 5AT/Sr (NO3) 2 propellants was divided into four stages. The first phase was 5AT decomposition of azido, cyanamide and melamine: the second stage was melamine decomposition production. Hydrogen cyanide and melalamines, melamine and other solid products; the third stage melalamines continue to decompose cyanide, azido, hydrogen cyanide and so on. At the same time, the oxidation-reduction reaction of the unresolved strontium nitrate is formed to produce formaldehyde and carbon dioxide; the fourth stage of strontium nitrate decomposition finally produces strontium oxide and nitrogen oxide. Finally, this is the result of the formation of strontium oxide and nitrogen oxide. With the help of TG-DSC test, combustion temperature test, burning rate test, thermal conductivity measurement, scanning electron microscope and other testing means, the combustion performance of 5AT/Sr (NO3) 2 propellant is regulated by negative catalyst (20% calcium carbonate coolant), positive catalyst (1% nanometer iron oxide, 1% nano copper oxide, 1% nano nickel oxide, 2% micron iron oxide, 2% nanometer iron oxide). The pyrolysis temperature and activation energy of the propellant with 20% calcium carbonate were reduced and the burning rate increased. This is due to the effect of calcium carbonate on the reaction of the solid state and the increase of the surface area of the solid state, while the pyrolysis temperature and activation energy of the solid state are all larger and the burning rate is greatly reduced at the end of the reaction, which is due to the carbonation. The CO2 produced by calcium decomposition causes the agglomeration effect of the gas phase reaction. It can be seen that, after adding calcium carbonate, the propellant appears the mesa effect and greatly reduces the combustion temperature, but the burning rate decreases greatly at the same time, which is not conducive to the rapid release of the fire extinguishing medium by the SPGG extinguisher. The 5AT of the transition metal oxide (TMO) is added. The burning rate of /Sr (NO3) 2 propellant is greatly increased and the combustion temperature is reduced in varying degrees, and the burning rate is consistent with the law of the thermal conductivity of TMO. It is found that TMO can adjust the surface area of heat transfer and reaction to control the reaction of the solid phase region, and can also change the reaction of the gas phase region. Heat absorption / heat discharge is used to control solid state reaction and gas phase reaction in synergistic control. The propellant added with 2% micron iron oxide is faster than the propellant adding 2% nanometer iron oxide. The agglomeration effect of nano iron oxide dispersed in the propellant, the effect of particle covering, and the application of nano particles to the burning rate are found. Through the study of 5AT/Sr (NO3) 2 propellant, a new propellant formula with safety, expansibility, low cost and excellent performance has been designed through the study of 5AT/Sr (NO3) propellant in this paper. The combustion performance of the traditional 5AT/Sr (NO3) 2 propellant is optimized and the combustion temperature is reduced. At the same time, improving the burning rate and reducing the burning rate pressure index, improving the fire extinguishing efficiency of 5AT/Sr (NO3) 2 propellant in SPGG fire extinguishing device, further promoting the market application and popularization of new SPGG fire extinguishing technology, and promoting the development of Halon alternative fire extinguishing technology.
【學(xué)位授予單位】:中國(guó)科學(xué)技術(shù)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:V512
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 胡松啟,李葆萱,李進(jìn)賢;含硼富燃料推進(jìn)劑一次燃燒噴射效率影響因素分析[J];固體火箭技術(shù);2004年03期
2 魯念惠;丁羥推進(jìn)劑的應(yīng)用與性能研究評(píng)述[J];宇航學(xué)報(bào);1981年04期
3 魯國(guó)林;硝胺對(duì)低燃速丁羥推進(jìn)劑能量與燃速的影響[J];固體火箭技術(shù);2001年02期
4 秦能,姚軍燕,賈延斌;工藝助劑在雙基系推進(jìn)劑中的應(yīng)用研究[J];火炸藥學(xué)報(bào);2002年01期
5 陽(yáng)建紅,徐景龍,劉朝豐,周凱;硝胺推進(jìn)劑燃燒性能研究[J];上海航天;2004年01期
6 李坐社,蘇昌銀,李葆萱,張愛(ài)科;高密度高強(qiáng)度丁羥推進(jìn)劑配方及工藝性研究[J];固體火箭技術(shù);2004年01期
7 徐司雨;趙鳳起;宋洪昌;李上文;;硝胺推進(jìn)劑和雙基系推進(jìn)劑燃速預(yù)估模型進(jìn)展[J];化學(xué)推進(jìn)劑與高分子材料;2006年02期
8 王利軍;孫翔宇;李學(xué)軍;儲(chǔ)強(qiáng);楊威;吳岳;;提高含硼富燃料推進(jìn)劑能量的技術(shù)途徑[J];火炸藥學(xué)報(bào);2006年06期
9 張瓊方;曹付齊;孫振華;;含硼富燃料推進(jìn)劑燃燒性能的研究進(jìn)展[J];含能材料;2007年04期
10 李志芳;司馬凱;;某發(fā)動(dòng)機(jī)裝藥丁羥推進(jìn)劑研制[J];江西化工;2007年04期
相關(guān)會(huì)議論文 前10條
1 韓曉娟;蘇昌銀;趙亮;樊瑛;;高強(qiáng)度硝胺丁羥推進(jìn)劑配方與工藝研究[A];中國(guó)化學(xué)會(huì)第五屆全國(guó)化學(xué)推進(jìn)劑學(xué)術(shù)會(huì)議論文集[C];2011年
2 孫偉;胡林俊;魏子力;;高強(qiáng)度丁羥推進(jìn)劑研究[A];中國(guó)宇航學(xué)會(huì)固體火箭推進(jìn)第22屆年會(huì)論文集(推進(jìn)劑分冊(cè))[C];2005年
3 薄慧馨;張占權(quán);何耀東;;國(guó)外少煙低污染丁羥推進(jìn)劑研制進(jìn)展綜述[A];中國(guó)宇航學(xué)會(huì)固體火箭推進(jìn)第22屆年會(huì)論文集(推進(jìn)劑分冊(cè))[C];2005年
4 盧國(guó)強(qiáng);羅智勇;;鋁鎂富燃料推進(jìn)劑研制[A];中國(guó)宇航學(xué)會(huì)固體火箭推進(jìn)第22屆年會(huì)論文集(推進(jìn)劑分冊(cè))[C];2005年
5 陳艷萍;王利軍;;含硼富燃料推進(jìn)劑技術(shù)[A];中國(guó)宇航學(xué)會(huì)固體火箭推進(jìn)第22屆年會(huì)論文集(推進(jìn)劑分冊(cè))[C];2005年
6 周志清;楊月誠(chéng);周偉;高雙武;;氧化性粘合劑夾層三明治推進(jìn)劑模型細(xì)觀燃燒數(shù)值分析[A];中國(guó)計(jì)算力學(xué)大會(huì)'2010(CCCM2010)暨第八屆南方計(jì)算力學(xué)學(xué)術(shù)會(huì)議(SCCM8)論文集[C];2010年
7 杜秋麗;;疊氮高能鈍感推進(jìn)劑配方研究[A];中國(guó)宇航學(xué)會(huì)固體火箭推進(jìn)第22屆年會(huì)論文集(推進(jìn)劑分冊(cè))[C];2005年
8 楊威;孫翔宇;王利軍;;鋁鎂富燃料推進(jìn)劑燃燒特性[A];中國(guó)宇航學(xué)會(huì)固體火箭推進(jìn)第22屆年會(huì)論文集(推進(jìn)劑分冊(cè))[C];2005年
9 高東磊;郭洋;張煒;;含硼富燃料推進(jìn)劑燃燒波結(jié)構(gòu)研究[A];復(fù)合材料:創(chuàng)新與可持續(xù)發(fā)展(上冊(cè))[C];2010年
10 李輝;吳祝駿;徐亞龍;陳淑秉;;降低疊氮推進(jìn)劑燃速溫度敏感系數(shù)研究[A];中國(guó)宇航學(xué)會(huì)固體火箭推進(jìn)第22屆年會(huì)論文集(推進(jìn)劑分冊(cè))[C];2005年
相關(guān)重要報(bào)紙文章 前1條
1 馬冬梅;為什么火箭要分級(jí)?[N];中國(guó)國(guó)防報(bào);2003年
相關(guān)博士學(xué)位論文 前3條
1 張丹;5-氨基四氮唑類固體推進(jìn)劑熱解動(dòng)力學(xué)及燃燒特性研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2017年
2 孫運(yùn)蘭;新型含能材料的燃燒機(jī)理研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2007年
3 李笑江;粒鑄EMCDB推進(jìn)劑制備原理及性能研究[D];南京理工大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 鄧敏;低黏度端羥基預(yù)聚物基聚氨酯的制備及其在推進(jìn)劑中的應(yīng)用研究[D];南京理工大學(xué);2017年
2 李曉波;煙火推進(jìn)劑的設(shè)計(jì)及其產(chǎn)物的環(huán)境特性研究[D];南京理工大學(xué);2008年
3 王金;固體火箭發(fā)動(dòng)機(jī)含缺陷推進(jìn)劑粘彈性力學(xué)行為分析[D];南京理工大學(xué);2008年
4 談曉磊;水沖壓發(fā)動(dòng)機(jī)推進(jìn)劑多功能助劑的研制[D];湖南大學(xué);2011年
5 李麗霞;納米CuO在推進(jìn)劑中的分散性表征技術(shù)[D];南京理工大學(xué);2010年
6 于新杰;納米CuO分散性對(duì)推進(jìn)劑燃燒性能的影響[D];南京理工大學(xué);2012年
7 郭西良;鋁化復(fù)合底排推進(jìn)劑燃燒及兩相流動(dòng)特性研究[D];南京理工大學(xué);2014年
8 黎超華;丁羥四組元推進(jìn)劑補(bǔ)強(qiáng)降速雙效助劑的合成與應(yīng)用[D];湖南大學(xué);2014年
9 黃求安;組份在推進(jìn)劑/襯層中遷移特性的新方法探索[D];南京理工大學(xué);2008年
10 李明靜;LBA-203鍵合劑的合成及其性能研究[D];內(nèi)蒙古大學(xué);2009年
,本文編號(hào):2171657
本文鏈接:http://www.lk138.cn/shoufeilunwen/gckjbs/2171657.html