中国韩国日本在线观看免费,A级尤物一区,日韩精品一二三区无码,欧美日韩少妇色

當(dāng)前位置:主頁(yè) > 碩博論文 > 工程博士論文 >

5-氨基四氮唑類固體推進(jìn)劑熱解動(dòng)力學(xué)及燃燒特性研究

發(fā)布時(shí)間:2018-08-08 11:31
【摘要】:固體推進(jìn)式滅火技術(shù)(SPGG)憑借其諸多優(yōu)異特性而獲得了廣泛的關(guān)注,諸如惰性氣體生成量大、可常壓貯存、可配合使用液體滅火劑、可按需求定量釋放滅火劑等優(yōu)點(diǎn),SPGG已成為一種熱門并極具前景的哈龍?zhí)娲鷾缁鸺夹g(shù)。然而,SPGG滅火裝置內(nèi)部的主要成分5-氨基四氮唑/硝酸鍶(5AT/Sr(N03)2)推進(jìn)劑存在產(chǎn)氣溫度高、燃速受壓力影響變化大等缺陷,削弱了 SPGG滅火裝置的滅火效率,限制其推廣和使用。因此,本文以高氮含能化合物5-氨基四氮唑及其與硝酸鍶組成的推進(jìn)劑為研究對(duì)象,通過(guò)添加正負(fù)催化劑的方式,深入研究粒徑、催化劑等變量對(duì)5AT/Sr(N03)2推進(jìn)劑燃燒性能的影響,從熱解機(jī)理的角度揭示各變量對(duì)固體推進(jìn)劑燃燒性能的影響作用機(jī)制,旨在探索一種燃溫低、燃速快、燃速壓力指數(shù)低的新型5AT/Sr(N03)2固體推進(jìn)劑。首先,本文以高氮含能化合物5AT為研究對(duì)象,深入探究5AT的熱解特性及熱解反應(yīng)機(jī)制。一方面,制備四種粒徑的5AT樣品,聯(lián)合采用熱重、熱流技術(shù)對(duì)不同粒徑的5AT樣品的熱穩(wěn)定性進(jìn)行對(duì)比分析,發(fā)現(xiàn)粒徑越小的5AT對(duì)熱的抵抗力越差,借助比表面積和掃描電鏡等測(cè)試手段揭示粒徑對(duì)5AT熱解的影響機(jī)理,推測(cè)可能是由于小的顆粒粒徑會(huì)形成較高的表面能、更快的傳熱傳質(zhì)速率所導(dǎo)致的,從四種粒徑中選出較容易發(fā)生反應(yīng)、且易實(shí)現(xiàn)操作的5AT粒徑范圍,同時(shí)預(yù)測(cè)5AT樣品熱解反應(yīng)屬于Di擴(kuò)散模型;另一方面,研究三種不同的納米過(guò)渡金屬氧化物(納米氧化鐵、納米氧化銅、納米氧化鎳)催化劑對(duì)5AT熱分解的催化機(jī)理,借助熱重、熱流、傅里葉紅外、質(zhì)譜、比表面積測(cè)試、電鏡掃描等測(cè)試手段,發(fā)現(xiàn)過(guò)渡金屬氧化物的存在將會(huì)加速5AT的熱解速率,這是由于過(guò)渡金屬氧化物的添加阻礙了 CN的組合成鍵,而是加速了 CN鍵的斷裂所造成的?偨Y(jié)來(lái)說(shuō),粒徑更小、含有過(guò)渡金屬氧化物的5AT熱敏感性更強(qiáng),在生產(chǎn)、運(yùn)輸、貯存的過(guò)程中也需更多安全方面的關(guān)注。其次,本文以5AT/Sr(NO3)2推進(jìn)劑為研究對(duì)象,結(jié)合熱重-質(zhì)譜聯(lián)用技術(shù)探究了推進(jìn)劑的熱解機(jī)理,研究發(fā)現(xiàn)5AT/Sr(NO3)2推進(jìn)劑的熱解共分為四個(gè)階段,第一階段是5AT分解生成疊氮酸、氨基氰和三聚氰胺:第二階段是三聚氰胺分解產(chǎn)生氰化氫及蜜勒胺、蜜白胺等固態(tài)產(chǎn)物;第三階段中蜜勒胺繼續(xù)分解生成氨基氰、疊氮酸、氰化氫等,同時(shí)與尚未分解的硝酸鍶之間發(fā)生了氧化還原反應(yīng)生成甲醛、二氧化碳;第四階段硝酸鍶發(fā)生分解最終生成氧化鍶和氮氧化物。最后,本文借助TG-DSC測(cè)試、燃溫測(cè)試、燃速測(cè)試、導(dǎo)熱系數(shù)測(cè)量、掃描電鏡等測(cè)試手段,分別研究了負(fù)催化劑(20%碳酸鈣冷卻劑)、正催化劑(1%納米氧化鐵、1%納米氧化銅、1%納米氧化鎳、2%微米氧化鐵、2%納米氧化鐵)對(duì)5AT/Sr(NO3)2推進(jìn)劑燃燒性能的調(diào)節(jié)作用。添加了 20%碳酸鈣的推進(jìn)劑在反應(yīng)初期的熱解溫度和活化能均減小,燃速升高,這是由于碳酸鈣調(diào)節(jié)了固相區(qū)的反應(yīng),增大了固相區(qū)的反應(yīng)表面積所引起的,而在反應(yīng)末期其熱解溫度和活化能均變大而燃速大幅度降低,這是由于碳酸鈣分解產(chǎn)生的CO2引發(fā)了氣相區(qū)反應(yīng)的團(tuán)聚效應(yīng)造成的?梢钥吹奖M管添加了碳酸鈣之后,推進(jìn)劑出現(xiàn)了麥撒效應(yīng)并大大降低了燃燒溫度,但是燃速同時(shí)大幅度降低,不利于SPGG滅火裝置快速推出滅火介質(zhì)。添加了過(guò)渡金屬氧化物(TMO)的5AT/Sr(NO3)2推進(jìn)劑燃速大大提高,同時(shí)燃溫也有不同程度的降低,并且燃速、燃溫改變幅度與TMO的導(dǎo)熱系數(shù)大小規(guī)律保持一致。研究作用機(jī)理發(fā)現(xiàn),TMO可以調(diào)節(jié)熱量傳遞和反應(yīng)的表面積以實(shí)現(xiàn)對(duì)固相區(qū)反應(yīng)的控制,還可以改變氣相區(qū)反應(yīng)的吸熱/放熱量,實(shí)現(xiàn)協(xié)同控制固相區(qū)反應(yīng)和氣相區(qū)反應(yīng)的作用。添加了 2%微米氧化鐵的推進(jìn)劑比添加了 2%納米氧化鐵的推進(jìn)劑燃速更快,發(fā)現(xiàn)了納米氧化鐵分散在推進(jìn)劑中所存在的團(tuán)聚效應(yīng)、顆粒覆蓋效應(yīng),指出將納米顆粒應(yīng)用作燃速調(diào)節(jié)劑時(shí)應(yīng)提前采用電化學(xué)溶解等手段進(jìn)行表面改性處理。通過(guò)本文對(duì)5AT/Sr(NO3)2推進(jìn)劑的研究,設(shè)計(jì)出一種安全、可擴(kuò)展、成本低廉、性能優(yōu)良的新型推進(jìn)劑配方,實(shí)現(xiàn)了對(duì)傳統(tǒng)5AT/Sr(NO3)2推進(jìn)劑燃燒性能的優(yōu)化,滿足了在降低燃燒溫度的同時(shí)提高燃速、降低燃速壓力指數(shù)的要求,提高5AT/Sr(NO3)2推進(jìn)劑在SPGG滅火裝置中的滅火效率,進(jìn)一步推動(dòng)了新型SPGG滅火技術(shù)的市場(chǎng)應(yīng)用和推廣,促進(jìn)哈龍?zhí)娲鷾缁鸺夹g(shù)的發(fā)展。
[Abstract]:Solid propelled fire extinguishing technology (SPGG) has received extensive attention for its excellent characteristics, such as large amount of inert gas, storage at normal pressure, and the use of liquid fire extinguishing agent to release fire extinguishing agent according to demand. SPGG has become a hot and promising alternative fire extinguishing technology for Halon. However, SPGG fire extinguishing assembly The main components, 5- amino tetrazolium / strontium nitrate (5AT/Sr (N03) 2) propellant, have high gas production temperature and high burning rate affected by pressure, which weaken the fire extinguishing efficiency of the SPGG fire extinguisher and restrict its popularization and use. Therefore, the propellant composed of 5- amino tetrazolium and its strontium nitrate with high nitrogen energetic compound and the propellant composed of strontium nitrate are studied in this paper. The effect of particle size, catalyst and other variables on the combustion performance of 5AT/Sr (N03) 2 propellant was investigated by adding positive and negative catalysts. The effect mechanism of various variables on the combustion performance of solid propellants was revealed from the point of view of pyrolysis mechanism. A new type of 5AT/Sr (N03) with low combustion temperature, fast burning rate and low burning rate pressure index was explored. ) 2 solid propellant. First, in this paper, a high nitrogen energetic compound 5AT was used as the research object to explore the pyrolysis characteristics of 5AT and the mechanism of pyrolysis reaction. On the one hand, the 5AT samples of four kinds of particle sizes were prepared. The thermal stability of 5AT samples with different particle sizes was analyzed by thermogravimetry and heat flow technique, and the resistance of 5AT to heat was found with smaller particle size. The worse the force, the influence mechanism of particle size on 5AT pyrolysis is revealed by means of specific surface area and scanning electron microscope. It is presumed that it may be caused by the formation of higher surface energy and faster heat and mass transfer rate by the small particle size. It is possible to choose the 5AT particle size range easily and easily to be operated from four kinds of particle sizes. The pyrolysis of 5AT samples belongs to the Di diffusion model. On the other hand, the catalytic mechanism of three different nano transition metal oxides (nanoscale iron oxide, nano cuprous oxide, nanoscale oxide) catalyst for the thermal decomposition of 5AT is studied, and the transition from thermogravimetry, heat flow, Fourier infrared, mass spectrum, specific surface area test and electron microscope scanning are found. The presence of metal oxides will accelerate the pyrolysis rate of 5AT because the addition of transition metal oxides hinders the combination of CN, but accelerates the fracture of the CN bond. In summary, the particle size is smaller, and the 5AT with transition metal oxide is more sensitive, and more safety is needed in the process of production, transportation and storage. Secondly, using 5AT/Sr (NO3) 2 propellant as the research object, the pyrolysis mechanism of propellant was investigated by TG mass spectrometry combined with TG mass spectrometry. The pyrolysis of 5AT/Sr (NO3) 2 propellants was divided into four stages. The first phase was 5AT decomposition of azido, cyanamide and melamine: the second stage was melamine decomposition production. Hydrogen cyanide and melalamines, melamine and other solid products; the third stage melalamines continue to decompose cyanide, azido, hydrogen cyanide and so on. At the same time, the oxidation-reduction reaction of the unresolved strontium nitrate is formed to produce formaldehyde and carbon dioxide; the fourth stage of strontium nitrate decomposition finally produces strontium oxide and nitrogen oxide. Finally, this is the result of the formation of strontium oxide and nitrogen oxide. With the help of TG-DSC test, combustion temperature test, burning rate test, thermal conductivity measurement, scanning electron microscope and other testing means, the combustion performance of 5AT/Sr (NO3) 2 propellant is regulated by negative catalyst (20% calcium carbonate coolant), positive catalyst (1% nanometer iron oxide, 1% nano copper oxide, 1% nano nickel oxide, 2% micron iron oxide, 2% nanometer iron oxide). The pyrolysis temperature and activation energy of the propellant with 20% calcium carbonate were reduced and the burning rate increased. This is due to the effect of calcium carbonate on the reaction of the solid state and the increase of the surface area of the solid state, while the pyrolysis temperature and activation energy of the solid state are all larger and the burning rate is greatly reduced at the end of the reaction, which is due to the carbonation. The CO2 produced by calcium decomposition causes the agglomeration effect of the gas phase reaction. It can be seen that, after adding calcium carbonate, the propellant appears the mesa effect and greatly reduces the combustion temperature, but the burning rate decreases greatly at the same time, which is not conducive to the rapid release of the fire extinguishing medium by the SPGG extinguisher. The 5AT of the transition metal oxide (TMO) is added. The burning rate of /Sr (NO3) 2 propellant is greatly increased and the combustion temperature is reduced in varying degrees, and the burning rate is consistent with the law of the thermal conductivity of TMO. It is found that TMO can adjust the surface area of heat transfer and reaction to control the reaction of the solid phase region, and can also change the reaction of the gas phase region. Heat absorption / heat discharge is used to control solid state reaction and gas phase reaction in synergistic control. The propellant added with 2% micron iron oxide is faster than the propellant adding 2% nanometer iron oxide. The agglomeration effect of nano iron oxide dispersed in the propellant, the effect of particle covering, and the application of nano particles to the burning rate are found. Through the study of 5AT/Sr (NO3) 2 propellant, a new propellant formula with safety, expansibility, low cost and excellent performance has been designed through the study of 5AT/Sr (NO3) propellant in this paper. The combustion performance of the traditional 5AT/Sr (NO3) 2 propellant is optimized and the combustion temperature is reduced. At the same time, improving the burning rate and reducing the burning rate pressure index, improving the fire extinguishing efficiency of 5AT/Sr (NO3) 2 propellant in SPGG fire extinguishing device, further promoting the market application and popularization of new SPGG fire extinguishing technology, and promoting the development of Halon alternative fire extinguishing technology.
【學(xué)位授予單位】:中國(guó)科學(xué)技術(shù)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:V512

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 胡松啟,李葆萱,李進(jìn)賢;含硼富燃料推進(jìn)劑一次燃燒噴射效率影響因素分析[J];固體火箭技術(shù);2004年03期

2 魯念惠;丁羥推進(jìn)劑的應(yīng)用與性能研究評(píng)述[J];宇航學(xué)報(bào);1981年04期

3 魯國(guó)林;硝胺對(duì)低燃速丁羥推進(jìn)劑能量與燃速的影響[J];固體火箭技術(shù);2001年02期

4 秦能,姚軍燕,賈延斌;工藝助劑在雙基系推進(jìn)劑中的應(yīng)用研究[J];火炸藥學(xué)報(bào);2002年01期

5 陽(yáng)建紅,徐景龍,劉朝豐,周凱;硝胺推進(jìn)劑燃燒性能研究[J];上海航天;2004年01期

6 李坐社,蘇昌銀,李葆萱,張愛(ài)科;高密度高強(qiáng)度丁羥推進(jìn)劑配方及工藝性研究[J];固體火箭技術(shù);2004年01期

7 徐司雨;趙鳳起;宋洪昌;李上文;;硝胺推進(jìn)劑和雙基系推進(jìn)劑燃速預(yù)估模型進(jìn)展[J];化學(xué)推進(jìn)劑與高分子材料;2006年02期

8 王利軍;孫翔宇;李學(xué)軍;儲(chǔ)強(qiáng);楊威;吳岳;;提高含硼富燃料推進(jìn)劑能量的技術(shù)途徑[J];火炸藥學(xué)報(bào);2006年06期

9 張瓊方;曹付齊;孫振華;;含硼富燃料推進(jìn)劑燃燒性能的研究進(jìn)展[J];含能材料;2007年04期

10 李志芳;司馬凱;;某發(fā)動(dòng)機(jī)裝藥丁羥推進(jìn)劑研制[J];江西化工;2007年04期

相關(guān)會(huì)議論文 前10條

1 韓曉娟;蘇昌銀;趙亮;樊瑛;;高強(qiáng)度硝胺丁羥推進(jìn)劑配方與工藝研究[A];中國(guó)化學(xué)會(huì)第五屆全國(guó)化學(xué)推進(jìn)劑學(xué)術(shù)會(huì)議論文集[C];2011年

2 孫偉;胡林俊;魏子力;;高強(qiáng)度丁羥推進(jìn)劑研究[A];中國(guó)宇航學(xué)會(huì)固體火箭推進(jìn)第22屆年會(huì)論文集(推進(jìn)劑分冊(cè))[C];2005年

3 薄慧馨;張占權(quán);何耀東;;國(guó)外少煙低污染丁羥推進(jìn)劑研制進(jìn)展綜述[A];中國(guó)宇航學(xué)會(huì)固體火箭推進(jìn)第22屆年會(huì)論文集(推進(jìn)劑分冊(cè))[C];2005年

4 盧國(guó)強(qiáng);羅智勇;;鋁鎂富燃料推進(jìn)劑研制[A];中國(guó)宇航學(xué)會(huì)固體火箭推進(jìn)第22屆年會(huì)論文集(推進(jìn)劑分冊(cè))[C];2005年

5 陳艷萍;王利軍;;含硼富燃料推進(jìn)劑技術(shù)[A];中國(guó)宇航學(xué)會(huì)固體火箭推進(jìn)第22屆年會(huì)論文集(推進(jìn)劑分冊(cè))[C];2005年

6 周志清;楊月誠(chéng);周偉;高雙武;;氧化性粘合劑夾層三明治推進(jìn)劑模型細(xì)觀燃燒數(shù)值分析[A];中國(guó)計(jì)算力學(xué)大會(huì)'2010(CCCM2010)暨第八屆南方計(jì)算力學(xué)學(xué)術(shù)會(huì)議(SCCM8)論文集[C];2010年

7 杜秋麗;;疊氮高能鈍感推進(jìn)劑配方研究[A];中國(guó)宇航學(xué)會(huì)固體火箭推進(jìn)第22屆年會(huì)論文集(推進(jìn)劑分冊(cè))[C];2005年

8 楊威;孫翔宇;王利軍;;鋁鎂富燃料推進(jìn)劑燃燒特性[A];中國(guó)宇航學(xué)會(huì)固體火箭推進(jìn)第22屆年會(huì)論文集(推進(jìn)劑分冊(cè))[C];2005年

9 高東磊;郭洋;張煒;;含硼富燃料推進(jìn)劑燃燒波結(jié)構(gòu)研究[A];復(fù)合材料:創(chuàng)新與可持續(xù)發(fā)展(上冊(cè))[C];2010年

10 李輝;吳祝駿;徐亞龍;陳淑秉;;降低疊氮推進(jìn)劑燃速溫度敏感系數(shù)研究[A];中國(guó)宇航學(xué)會(huì)固體火箭推進(jìn)第22屆年會(huì)論文集(推進(jìn)劑分冊(cè))[C];2005年

相關(guān)重要報(bào)紙文章 前1條

1 馬冬梅;為什么火箭要分級(jí)?[N];中國(guó)國(guó)防報(bào);2003年

相關(guān)博士學(xué)位論文 前3條

1 張丹;5-氨基四氮唑類固體推進(jìn)劑熱解動(dòng)力學(xué)及燃燒特性研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2017年

2 孫運(yùn)蘭;新型含能材料的燃燒機(jī)理研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2007年

3 李笑江;粒鑄EMCDB推進(jìn)劑制備原理及性能研究[D];南京理工大學(xué);2007年

相關(guān)碩士學(xué)位論文 前10條

1 鄧敏;低黏度端羥基預(yù)聚物基聚氨酯的制備及其在推進(jìn)劑中的應(yīng)用研究[D];南京理工大學(xué);2017年

2 李曉波;煙火推進(jìn)劑的設(shè)計(jì)及其產(chǎn)物的環(huán)境特性研究[D];南京理工大學(xué);2008年

3 王金;固體火箭發(fā)動(dòng)機(jī)含缺陷推進(jìn)劑粘彈性力學(xué)行為分析[D];南京理工大學(xué);2008年

4 談曉磊;水沖壓發(fā)動(dòng)機(jī)推進(jìn)劑多功能助劑的研制[D];湖南大學(xué);2011年

5 李麗霞;納米CuO在推進(jìn)劑中的分散性表征技術(shù)[D];南京理工大學(xué);2010年

6 于新杰;納米CuO分散性對(duì)推進(jìn)劑燃燒性能的影響[D];南京理工大學(xué);2012年

7 郭西良;鋁化復(fù)合底排推進(jìn)劑燃燒及兩相流動(dòng)特性研究[D];南京理工大學(xué);2014年

8 黎超華;丁羥四組元推進(jìn)劑補(bǔ)強(qiáng)降速雙效助劑的合成與應(yīng)用[D];湖南大學(xué);2014年

9 黃求安;組份在推進(jìn)劑/襯層中遷移特性的新方法探索[D];南京理工大學(xué);2008年

10 李明靜;LBA-203鍵合劑的合成及其性能研究[D];內(nèi)蒙古大學(xué);2009年



本文編號(hào):2171657

資料下載
論文發(fā)表

本文鏈接:http://www.lk138.cn/shoufeilunwen/gckjbs/2171657.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶c30eb***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com