細胞擴增生物反應(yīng)器控制系統(tǒng)的研究
本文選題:波浪式生物反應(yīng)器 + 控制系統(tǒng)。 參考:《中國人民解放軍軍事醫(yī)學(xué)科學(xué)院》2017年碩士論文
【摘要】:目的:近年來,隨著科學(xué)技術(shù)的發(fā)展,動物細胞培養(yǎng)技術(shù)被廣泛應(yīng)用于生物醫(yī)藥產(chǎn)品的工業(yè)生產(chǎn)中,如蛋白質(zhì)藥物研發(fā)、干細胞移植、疫苗生產(chǎn)、人造組織器官等領(lǐng)域。例如造血干細胞移植可長期重建造血和免疫,它適用于治療造血干、祖細胞或相關(guān)基因有缺陷的疾病,如白血病、重度免疫缺損、自身免疫病等,是一種重要的生物治療或細胞治療方法。但往往人體本身可提供的造血干細胞不足,這就迫切需要在體外對這些干細胞進行大規(guī)模擴增。生物反應(yīng)器的提出就為造血干細胞的體外擴增提供了一種非常有效的方法。細胞的培養(yǎng)擴增過程是極其復(fù)雜的生物化學(xué)反應(yīng)過程,其代謝必須在適宜的周圍環(huán)境中才能有效進行。國外已經(jīng)有比較成熟的生物反應(yīng)器,但國內(nèi)還沒有商品化的動物細胞生物反應(yīng)器。本文對波浪式生物反應(yīng)器的控制系統(tǒng)進行研究,旨在完成一套基于波浪式生物反應(yīng)器的細胞培養(yǎng)條件的控制系統(tǒng),使其能更好的應(yīng)用在細胞的擴增培養(yǎng)上,進而推動我國生物反應(yīng)器行業(yè)向前發(fā)展。方法:通過對當(dāng)前生物反應(yīng)器培養(yǎng)條件的控制方法和控制系統(tǒng)進行分析和討論,提出適合波浪式生物反應(yīng)器培養(yǎng)系統(tǒng)的控制方法?刂葡到y(tǒng)的設(shè)計主要可以分為三部分:培養(yǎng)條件控制方法的設(shè)計、控制系統(tǒng)軟/硬件部分設(shè)計、仿真及實際實驗驗證部分。關(guān)于控制方法的設(shè)計,根據(jù)溫度控制要求及溫度控制大滯后的特點,設(shè)計出Fuzzy-PID控制算法;根據(jù)PH控制要求及PH過程強烈非線性的特性,對分段式變增益PID進行改進,設(shè)計出四區(qū)段變增益PID控制算法;根據(jù)溶解氧濃度非定值控制的特點,設(shè)計出TP-PID的控制算法。關(guān)于控制系統(tǒng)軟/硬件部分的設(shè)計,采用單片機為主控芯片,結(jié)合MPLAB、MATLAB等實現(xiàn)上、下位機的連接與配合。實驗部分,在仿真實驗的基礎(chǔ)上進一步通過實際實驗驗證控制算法的效果以及控制系統(tǒng)的性能。內(nèi)容:本文研究工作主要包括以下幾個方面:(1)生物反應(yīng)器控制系統(tǒng)分類及參數(shù)控制方法調(diào)研、控制系統(tǒng)控制方案設(shè)計。通過大量查閱文獻并與相關(guān)行業(yè)人士接觸,調(diào)研生物反應(yīng)器細胞培養(yǎng)的最新進展情況。分析各類控制方法和控制系統(tǒng)的優(yōu)缺點,從而為文章控制系統(tǒng)的選擇和控制方法的提出提供研發(fā)的現(xiàn)實意義與應(yīng)用前景。設(shè)計系統(tǒng)整體控制方案,通過比較硬件元器件的性能以及滿足應(yīng)用的情況,選出最佳的系統(tǒng)方案。(2)控制系統(tǒng)硬件設(shè)計與實現(xiàn)。系統(tǒng)硬件設(shè)計主要包括下位機執(zhí)行部件的選擇、上位機主控部件的選擇以及上、下位機之間的集成。下位機硬件部分由主控芯片、檢測器件、執(zhí)行器件、傳輸線等幾部分組成。主控芯片選擇dspic30f6014a單片機為控制系統(tǒng)下位機的核心,該芯片將核心處理層及整個外圍電路層如輸入/輸出端口、內(nèi)存、定時器、計數(shù)器等全部都集成在一塊芯片上,實現(xiàn)了實驗數(shù)據(jù)的一整套的接收、計算、存儲、發(fā)送功能;檢測器件根據(jù)需要控制的T、PH、DO三個培養(yǎng)條件分別選擇Pt100、在線PH儀、在線溶解氧儀;執(zhí)行器件根據(jù)控制原理選擇電熱毯、蠕動泵、電磁閥等。上位機主控部件根據(jù)需要選擇集顯示、控制、存儲等功能于一體的DGUS屏,實現(xiàn)對控制系統(tǒng)的整體監(jiān)控。上、下位機集成主要由它們之間的通訊線連接及統(tǒng)一的通訊協(xié)議實現(xiàn)。(3)控制系統(tǒng)控制算法設(shè)計與實現(xiàn)。本文主要設(shè)計完成了三個控制算法,即針對溫度控制的Fuzzy-PID控制算法、針對PH控制的四區(qū)段變增益PID控制算法和針對溶解氧濃度控制的TP-PID控制算法。其中,Fuzzy-PID控制算法并非采用傳統(tǒng)的并聯(lián)使用的模式,而是將兩種方法整合到一起,以檢測信號作為模糊控制的輸入,以模糊控制的輸出作為PID控制的輸入,最后以PID控制的輸出作為系統(tǒng)控制信號的輸出;四區(qū)段變增益PID控制是在分段式變增益PID的基礎(chǔ)上根據(jù)生物反應(yīng)器的實際情況進行改進得到的,充分考慮了PH控制的強烈的非線性特性;溶解氧濃度控制算法的設(shè)計考慮只需將其控制在某一范圍內(nèi)即可,主要是參考傳統(tǒng)控制的模式。(4)人機交互界面設(shè)計及觸控配置完成。上位機人機交互界面選用DGUS屏,型號為DWT80600T080_06WT,使用Microsoft Visio Premium 2010進行圖片制作,需要顯示的圖片主要包括系統(tǒng)初始化部分、主界面部分、數(shù)據(jù)輸入界面部分等。觸控配置使用DGUS配置工具V49,將制作好的圖片導(dǎo)入配置工具,按照顯示屏操作要求在相應(yīng)區(qū)域位置添加文本顯示、按鍵返回、RTC顯示等配置操作,并設(shè)置好相應(yīng)配置的變量地址、文本長度、按鍵值、案件效果等。將配置好觸控功能的顯示圖片導(dǎo)入到DGUS屏里就完成了人機交互界面的設(shè)計。(5)仿真實驗加實際實驗驗證算法可靠性及控制系統(tǒng)性能。為驗證控制算法的可靠性,首先使用MATLAB軟件中的Simulink軟件包設(shè)計Fuzzy-PID的溫度控制仿真實驗和分段式變增益PID的PH控制仿真實驗,兩個仿真實驗均以控制時間和控制精度作為控制算法性能可靠的判斷依據(jù)。仿真實驗驗證算法可靠性之后設(shè)計實際實驗進行驗證。使用MPLAB軟件按照算法設(shè)計編寫三種控制算法的程序并將其導(dǎo)入單片機進行實際實驗,驗證標準依然是控制的時間和穩(wěn)定后的控制精度。結(jié)果:本文根據(jù)細胞培養(yǎng)的要求,完成了波浪式生物反應(yīng)器控制系統(tǒng)中T、PH、DO三個培養(yǎng)條件控制算法的設(shè)計,完成了控制系統(tǒng)硬件選擇,完成了控制系統(tǒng)電路設(shè)計,完成了上、下位機通訊設(shè)計,完成了人機交互界面的選擇和設(shè)計,完成了單片機對應(yīng)程序的編寫,最后在仿真實驗基礎(chǔ)上設(shè)計實際實驗完成了算法可靠性的驗證工作。發(fā)表了兩篇論文。結(jié)論:本文介紹了各類生物反應(yīng)器控制系統(tǒng)及控制方法,具體分析了各控制系統(tǒng)的優(yōu)缺點,提出采用單片機作為主控芯片對波浪式生物反應(yīng)器控制系統(tǒng)進行研究,并根據(jù)要調(diào)節(jié)的培養(yǎng)條件的特性設(shè)計出不同的控制方法。在實際實驗進行控制時,溫度控制精度可達到±0.1℃,PH控制精度可達到±0.05,溶解氧濃度精度可達到±6%。表明本文所研制的控制系統(tǒng)能夠穩(wěn)定可靠的運行且控制效果良好,說明控制系統(tǒng)能很好地維持細胞生長需要的適宜的環(huán)境,滿足細胞培養(yǎng)過程的控制要求。本文的創(chuàng)新點在于根據(jù)不同被控條件設(shè)計出相應(yīng)的控制方法,如針對溫度控設(shè)計了模糊PID控制、針對PH控制設(shè)計了四區(qū)段變增益PID控制;使用dsPIC30f6014a型號單片機作為主控芯片,不僅降低了研發(fā)成本,還提高了系統(tǒng)靈活性,縮短了開發(fā)周期;使用DGUS屏作為人機交互界面,實現(xiàn)了對控制界面的搭配式設(shè)計;將系統(tǒng)進行模塊化設(shè)計,最后集合到一起,降低了故障的影響率。
[Abstract]:Objective: in recent years, with the development of science and technology, animal cell culture technology has been widely used in the industrial production of biological medicine products, such as protein drug development, stem cell transplantation, vaccine production, artificial tissue and organs, such as hematopoietic stem cell transplantation for long period of heavy construction of blood and immunity, it is suitable for the treatment of hematopoietic stem, ancestral fine. Diseases such as leukemia, severe immunodeficiency, and autoimmune diseases, such as leukemia, severe immunodeficiency, and autoimmune diseases, are an important method of biological treatment or cell therapy. However, the human body itself can provide a lack of hematopoietic stem cells. This is an urgent need for large-scale expansion of these stem cells in vitro. The bioreactor is proposed for hematopoiesis. The expansion of stem cells in vitro provides a very effective method. The process of cell culture and amplification is an extremely complex biochemical reaction process, and its metabolism must be effectively carried out in a suitable environment. There have been more mature bioreactors abroad, but there are no commercialized animal cell bioreactors at home. The paper studies the control system of wave bioreactor, which aims to complete a set of control system based on cell culture conditions based on wave bioreactor, so that it can be better applied to cell expansion and culture, and then promote the development of bioreactor industry in China. The control method and control system are analyzed and discussed, and the control method suitable for the wave bioreactor training system is put forward. The design of the control system can be divided into three parts: the design of the training condition control method, the design of the soft / hardware part of the control system, the simulation and the actual experimental verification part. The Fuzzy-PID control algorithm is designed for the requirements of temperature control and the large lag in temperature control. According to the requirements of PH control and the strong nonlinear characteristics of the PH process, the piecewise variable gain PID is improved and the four section variable gain PID control algorithm is designed. The control algorithm of the TP-PID is designed according to the characteristics of the dissolved oxygen concentration control. In the design of the soft / hardware part of the control system, the MCU is used as the main control chip, the connection and coordination of the lower computer are combined with MPLAB, MATLAB and so on. In the experiment part, the effect of the control algorithm and the performance of the control system are verified on the basis of the simulation experiment. The following aspects: (1) the research on the classification of the bioreactor control system and the method of parameter control, the design of control system control scheme. Through a large number of references and contact with the related industry, the latest progress in the cell culture of bioreactor is investigated and the advantages and disadvantages of various control methods and control systems are analyzed, so as to control the system The selection and control methods provide the practical significance and application prospect of the research and development. Design the overall control scheme of the system. By comparing the performance of the hardware components and meeting the application situation, the best system scheme is selected. (2) the hardware design and implementation of the control system. The system hardware design mainly includes the selection of the executive components of the lower machine. The hardware part of the lower computer consists of the main control chip, the detection device, the execution device, the transmission line and so on. The main control chip chooses the dspic30f6014a MCU as the core of the control system lower computer. The chip will be the core processing layer and the whole peripheral circuit layer, such as input / output. The mouth, memory, timer, counter and so on are all integrated on a chip, realizing a complete set of receiving, calculating, storing and sending function of experimental data. The detection device selects Pt100, online PH instrument, on-line dissolved oxygen system according to the three conditions of T, PH, DO, and the actuator chooses electric blanket and peristaltic pump according to the control principle. The main control components of the host computer, according to the needs, select the DGUS screen which integrates display, control, storage and so on. The control system is monitored as a whole. The integration of the lower computer is mainly connected by the communication line between them and the unified communication protocol. (3) the design and implementation of control system control algorithm. The main design and completion of this paper is to complete the design and implementation of the control system. Three control algorithms, namely, the Fuzzy-PID control algorithm for temperature control, the four section variable gain PID control algorithm for the PH control and the TP-PID control algorithm for the dissolved oxygen concentration control, the Fuzzy-PID control algorithm is not used in the traditional parallel mode, but the two methods are integrated together to detect the signal as a signal. The input of fuzzy control takes the output of fuzzy control as the input of PID control, and the output of PID controlled as the output of the system control signal, and the four section variable gain PID control is improved on the basis of the piecewise variable gain PID based on the actual situation of the bioreactor, taking full account of the strong non line of the PH control. The design of dissolved oxygen concentration control algorithm only needs to control it in a certain range, mainly reference to the traditional control mode. (4) human-computer interaction interface design and touch control configuration. The computer interaction interface of the upper computer is DGUS screen, the model is DWT80600T080_06WT, and the Microsoft Visio Premium 2010 is used for the picture system The pictures that need to be displayed mainly include the system initialization, the main interface part, the data input interface, etc. the touch control configuration uses the DGUS configuration tool V49 to import the good picture into the configuration tool, and add the text display, the key return, the RTC display and so on in accordance with the display operation requirements. The corresponding variable address, text length, key value, case effect, etc.. The design of human-computer interaction interface is completed by introducing the display pictures with good touch function into the DGUS screen. (5) simulation experiments and practical experiments verify the reliability of the algorithm and the performance of the control system. In order to verify the reliability of the control algorithm, the first use of the MATLAB software is to verify the reliability of the algorithm. The Simulink software package designs the temperature control simulation experiment of Fuzzy-PID and the PH control simulation experiment of the piecewise variable gain PID. The two simulation experiments all take the control time and the control precision as the reliable judgment basis of the control algorithm performance. The simulation experiment verifies the reliability of the algorithm and designs the actual experiment to verify. The MPLAB software is used in the simulation experiment. According to the algorithm, three kinds of control algorithms are programmed and introduced into the single chip computer to carry out the actual experiment. It is proved that the standard is still the control time and the control precision after the stability. According to the requirements of cell culture, this paper completed the design of three training conditions control algorithms of T, PH and DO in the wave bioreactor control system. The control system hardware selection, completed the control system circuit design, completed the upper and lower computer communication design, completed the selection and design of the human-computer interaction interface, completed the programming of the single chip computer corresponding program. Finally, on the basis of the simulation experiment, the actual experiment was designed to complete the verification of the reliability of the calculation method. Two papers were published. In this paper, the control system and control methods of various bioreactors are introduced, the advantages and disadvantages of each control system are analyzed, and the control system of wave bioreactor is studied by using single chip microcomputer as the main control chip, and different control methods are designed according to the characteristics of the training conditions to be adjusted. The precision of temperature control can reach to 0.1 C, the precision of PH control can reach 0.05, the precision of dissolved oxygen concentration can reach to + 6%., which indicates that the control system developed in this paper can be stable and reliable, and the control effect is good. It shows that the control system can maintain the suitable environment for cell growth well and meet the control of cell culture process. The innovation point of this paper is to design the corresponding control methods according to the different controlled conditions, such as the design of the fuzzy PID control for temperature control, the design of the four section variable gain PID control for the PH control, and the use of the dsPIC30f6014a single chip as the main control chip, which not only reduces the R & D cost, but also improves the system flexibility and shortens the opening. With the use of DGUS screen as a human-computer interface, the collocation design of the control interface is realized. The system is designed and finally assembled to reduce the impact rate of the fault.
【學(xué)位授予單位】:中國人民解放軍軍事醫(yī)學(xué)科學(xué)院
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP273;Q813
【參考文獻】
相關(guān)期刊論文 前10條
1 李國棟;;PID功能塊在分程控制過程中的應(yīng)用[J];中國儀器儀表;2014年S1期
2 肖宏;鄭耀鋒;;基于電視導(dǎo)引頭穩(wěn)定平臺的自適應(yīng)模糊PID控制技術(shù)研究[J];電子技術(shù)與軟件工程;2014年13期
3 吳航;蘇衛(wèi)華;劉志國;;機動手術(shù)室微環(huán)境控制系統(tǒng)PID算法設(shè)計[J];軍事醫(yī)學(xué);2014年06期
4 王耀輝;強天偉;;PID控制原理簡析[J];潔凈與空調(diào)技術(shù);2013年03期
5 劉莉宏;;基于智能控制的PID控制方式的研究[J];北京工業(yè)職業(yè)技術(shù)學(xué)院學(xué)報;2012年02期
6 李健;王冬青;王麗美;;模糊PID控制器設(shè)計及MATLAB仿真[J];工業(yè)控制計算機;2011年05期
7 王述彥;師宇;馮忠緒;;基于模糊PID控制器的控制方法研究[J];機械科學(xué)與技術(shù);2011年01期
8 汪志鋒;袁景淇;;SUPCON JX-300X DCS在青霉素發(fā)酵生產(chǎn)過程中的應(yīng)用[J];微計算機信息;2006年22期
9 張嗣良,張恂,唐寅,劉健;發(fā)展我國大規(guī)模細胞培養(yǎng)生物反應(yīng)器裝備制造業(yè)[J];中國生物工程雜志;2005年07期
10 熊偉麗,徐保國,肖應(yīng)旺;基于PLC的Fuzzy PI發(fā)酵溫度控制系統(tǒng)[J];計算機工程;2005年09期
相關(guān)會議論文 前1條
1 向?qū)W軍;;變增益智能PID控制器[A];1995中國控制與決策學(xué)術(shù)年會論文集[C];1995年
相關(guān)碩士學(xué)位論文 前2條
1 白偉;基于分數(shù)階微積分的爐溫控制系統(tǒng)設(shè)計[D];中國計量學(xué)院;2013年
2 何秀權(quán);激流式生物反應(yīng)器監(jiān)控系統(tǒng)的研究[D];哈爾濱工業(yè)大學(xué);2009年
,本文編號:1817269
本文鏈接:http://lk138.cn/shoufeilunwen/benkebiyelunwen/1817269.html