進化計算中的復雜網絡動力學研究
本文關鍵詞:進化計算中的復雜網絡動力學研究 出處:《河北工程大學》2017年碩士論文 論文類型:學位論文
更多相關文章: 復雜網絡 進化計算 網絡動力學 網絡結構 種群多樣性
【摘要】:基于達爾文進化論的進化算法在求解問題時,可將問題描述成自然界中種群的進化過程,遵循適者生存的機制,通過種群的不斷進化,求得最優(yōu)解或滿意解。進化計算的研究較早,發(fā)展較成熟,且廣泛應用于社會的各個領域。但現(xiàn)有的研究只注重算法的最終結果或預測結果,往往忽視了進化過程中個體之間的關系和這些關系隨進化過程的變化,以及該變化關系對進化結果和收斂速度的影響。而本文主要針對這個被忽視的問題展開研究。通過研究優(yōu)化過程中個體之間的變化關系抽象出進化計算形成的網絡結構中蘊含的復雜網絡結構,并挖掘出進化計算中的復雜網絡動力學現(xiàn)象。隨著復雜網絡理論體系的不斷發(fā)展和研究,基于復雜網絡研究的應用越來越多。由于算法在迭代過程中,參與進化的個體總數不變,即網絡結構中節(jié)點的總數不變。網絡結構隨著邊的連接概率動態(tài)變化。網絡結構的變化影響著網絡動力學演化過程,而動力學的演化過程也影響網絡邊的動態(tài)重連,網絡結構與動力學演化過程之間的動態(tài)作用稱為“共同演化”過程,且受到廣大科研工作者的關注。這兩個看似完全不同的研究領域,復雜網絡和進化計算,兩者之間是否存在某種隱藏的結構關系,復雜網絡動力學能否描述算法的優(yōu)化過程,將成為未來研究的一大亮點。本文討論了一個完全不同領域的相互交叉研究:進化計算中是否蘊含著復雜網絡動力學現(xiàn)象。首先研究一般進化計算及改進算法的優(yōu)化過程;然后分析優(yōu)化過程中各個體之間的變化關系;再用復雜網絡模型將個體之間的變化關系進行動力學過程描述,并討論其蘊含的復雜網絡結構;最后分析該變化對進化結果和收斂速度的影響,并提出算法的改進意見,提高種群的多樣性。實驗結果表明進化計算的優(yōu)化過程可以用復雜網絡動力學描述,利用復雜網絡理論可有效控制并改進進化算法。本文的研究對于復雜網絡的深入研究以及進化計算的改進、優(yōu)化和控制等應用方面具有一定的理論意義和應用價值。
[Abstract]:The evolutionary algorithm based on Darwin's theory of evolution can describe the problem as the evolution process of population in nature, follow the mechanism of survival of the fittest, and continue to evolve through population. The research of evolutionary computing is earlier, more mature, and widely used in various fields of society. However, the existing research only focuses on the final results of the algorithm or the prediction results. The relationships between individuals in the evolution process and their changes with the evolution process are often ignored. And the influence of the change relation on the evolution result and convergence rate. This paper mainly focuses on the neglected problem. By studying the variation relation between individuals in the optimization process, the network formed by evolutionary computation is abstracted. The complex network structure contained in the network structure. With the development and research of complex network theory system, more and more applications based on complex network are found. Because the algorithm is in the iterative process. The total number of individuals involved in evolution is the same, that is, the total number of nodes in the network structure is unchanged. The network structure changes dynamically with the connection probability of the edge. The network structure changes affect the evolution process of the network dynamics. The dynamical evolution process also affects the dynamic reconnection of the network edge. The dynamic interaction between the network structure and the dynamic evolution process is called "co-evolution" process. These two seemingly different research fields, complex networks and evolutionary computing, have some hidden structural relationship. Can complex network dynamics describe the optimization process of the algorithm. This paper discusses an entirely different field of intersecting research:. Whether there are complex network dynamics phenomena in evolutionary computing. Firstly, the optimization process of general evolutionary computing and improved algorithm is studied. Then the relationship between the individuals in the process of optimization is analyzed. Then the dynamic process of the relationship between individuals is described by using the complex network model, and the complex network structure is discussed. Finally, the influence of the change on the evolution result and convergence rate is analyzed, and the improvement of the algorithm is proposed to improve the diversity of the population. The experimental results show that the optimization process of evolutionary computation can be described by complex network dynamics. The evolutionary algorithm can be effectively controlled and improved by using the complex network theory. The application of optimization and control has certain theoretical significance and application value.
【學位授予單位】:河北工程大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:O157.5;TP18
【參考文獻】
相關期刊論文 前10條
1 生龍;廣曉蕓;;進化計算與復雜網絡結構關系的研究[J];新型工業(yè)化;2016年11期
2 崔東文;姜敏;;差分進化算法-投影尋蹤模型在水質綜合評價中的應用[J];人民珠江;2016年02期
3 李常洪;趙偉棟;;基于狼群算法優(yōu)化的BP神經網絡[J];科技創(chuàng)新與生產力;2016年01期
4 劉錦偉;謝雄剛;方井;;基于遺傳算法-BP神經網絡的煤層注水效果分析[J];工礦自動化;2016年01期
5 郭小燕;劉學錄;王聯(lián)國;;基于混合蛙跳算法的土地利用格局優(yōu)化[J];農業(yè)工程學報;2015年24期
6 李廷順;李鐵鈺;;基于改進蛙跳算法的云計算資源調度[J];計算機應用與軟件;2015年12期
7 黃晶晶;鄭龍席;劉鋼旗;梅慶;;基于第二代非支配排序遺傳算法的轉子優(yōu)化設計[J];推進技術;2015年12期
8 劉述木;楊建;陳躍;;保角特征結合改進差分進化算法的三維人臉識別[J];計算機應用研究;2016年06期
9 尚俊娜;劉春菊;岳克強;李林;;多智能體蝙蝠算法在無線傳感器中的應用[J];傳感技術學報;2015年09期
10 龍文;趙東泉;徐松金;;求解約束優(yōu)化問題的改進灰狼優(yōu)化算法[J];計算機應用;2015年09期
,本文編號:1374022
本文鏈接:http://www.lk138.cn/shoufeilunwen/benkebiyelunwen/1374022.html