中国韩国日本在线观看免费,A级尤物一区,日韩精品一二三区无码,欧美日韩少妇色

銀和鈀修飾二氧化錳/二氧化鈦光電極光催化性能研究

發(fā)布時間:2020-12-09 02:35
  直接利用太陽能為光源的TiO2光催化技術被認為是21世紀最具應用前景的環(huán)境治理技術之一,它既解決了能源危機的困擾,又滿足了污染防治的迫切需要。與薄膜電極相比,陽極氧化法制備的TiO2納米管陣列(TiO2 NTs)因具有較高的比表面積、獨特的尺寸效應和良好的光吸收性能,在太陽能轉(zhuǎn)換、光解水制氫和污染物去除領域得到了廣泛關注。然而,TiO2對可見光利用效率較低,不能有效利用太陽能。本論文在制備高度有序的TiO2 NTs基礎上,通過MnOx改性獲得具有可見光響應的復合TiO2光電極,并對其物理化學結(jié)構(gòu)、光電化學性能和光電催化學性能進行了系統(tǒng)研究,以期為二氧化鈦光催化氧化技術處理廢水中難降解有機物的實用化提供依據(jù)。為解決粉末態(tài)催化劑不易回收、難重復使用的問題,本文采用電化學陽極氧化法以鈦片為基底原位制備TiO2 NTs,研究四種不同類型的電解質(zhì)溶液(NH42SO4<... 

【文章來源】:哈爾濱工業(yè)大學黑龍江省 211工程院校 985工程院校

【文章頁數(shù)】:138 頁

【學位級別】:博士

【文章目錄】:
摘要
Abstract
Chapter 1 Introduction
    1.1 Background and significance
    1.2 Principle and technical features of titanium dioxide photocatalysis
        1.2.1 Theory of semi-conductors excitation
        1.2.2 Titanium dioxide photocatalysis process
2">        1.2.3 Photocatalytic advantages and disadvantages of TiO2
  •     1.3 Fabrication methods of titanium dioxide nanotube arrays TiO2 NTs
            1.3.1 Hydrothermal method
            1.3.2 Freeze drying method
            1.3.3 Electrochemical deposition
            1.3.4 Synthesis Method
            1.3.5 Anodization method
            1.3.6 Sol-gel method
        1.4 Enhancing titanium dioxide nanotube arrays absorbance of visible light
            1.4.1 Surface photosensitivity
            1.4.2 Noble element deposition
            1.4.3 Non-metallic minerals deposition
            1.4.4 Metal element doping
            1.4.5 Element co-doping
            1.4.6 Coupled semiconductor
        1.5 Applications of Titanium dioxide nanotube arrays
            1.5.0 Degradation of Pollutants
            1.5.1 Water splitting
            1.5.2 Solar cell
            1.5.3 Photocatalytic cell
            1.5.4 Gas sensor
            1.5.5 Biomedical applications
            1.5.6 Drug delivery and release
        1.6 Present research on the role of magnesium dioxide as a potential semiconductor
            1.6.1 Introduction of the role and potential of manganese dioxides(MnOx)as semiconductors
            1.6.2 Codoping manganese dioxides(MnOx)with noble elements
            1.6.3 Present research on codoping manganese element with noble elements
        1.7 Photocatalytic degradation of Rhodamine B
            1.7.1 Properties of Rhodamine B
            1.7.2 Photodegradation of Rhodamine B
        1.8 The origin,purpose,significance,and contents of this work
            1.8.1 Research origin and significance
            1.8.2 Research contents
            1.8.3 Technical route
    Chapter 2 Experimental materials and research methods
        2.1 Chemical reagents and equipment
            2.1.1 Experimental reagents
            2.1.2 Experimental equipment
    2 nanotube photo-electrodes">    2.2 Fabrication of bare TiO2 nanotube photo-electrodes
            2.2.1 Titanium foil substrate pretreatment
    2 NTs photo electrode preparation">        2.2.2 TiO2 NTs photo electrode preparation
        2.3 Surface characterization and performance of photo-electrodes
            2.3.1 Scanning electron microscope analysis
            2.3.2 X-ray diffraction analysis
            2.3.3 UV-vis diffuse reflectance spectra analysis
    2 nanotube">    2.4 Photocatalytic degradation of organic pollutants on TiO2 nanotube
            2.4.1 Light source selection
            2.4.2 Selection of target pollutant
            2.4.3 Photocatalysis instruments and equipment
            2.4.4 Photocatalytic degradation evaluation of RhB
    2 NTs photoelectrode in different electrolyte mixtures and its photocatalytic performance">Chapter 3 Fabrication of TiO2 NTs photoelectrode in different electrolyte mixtures and its photocatalytic performance
        3.1 Introduction
    2 NTs photo-electrodes">    3.2 Production of TiO2 NTs photo-electrodes
    2 NTs photoelectrode">    3.3 Characterization of TiO2 NTs photoelectrode
    2 NTs photoelectrode">        3.3.1 Surface morphology analysis of TiO2 NTs photoelectrode
    2 NTs photoelectrode">        3.3.2 Crystal structure analysis of TiO2 NTs photoelectrode
    2 NTs photoelectrode">        3.3.3 Optical absorbance analysis of TiO2 NTs photoelectrode
    2 NTs photoelectrode">        3.3.4 Band gap energy analysis of TiO2 NTs photoelectrode
    2 NTs photoelectrode">    3.4 Photocatalytic properties analysis of TiO2 NTs photoelectrode
    2 NTs photoelectrode">        3.4.1 Photocatalytic degradation of Rhodamine B on TiO2 NTs photoelectrode
    2 NTs photoelectrodes">        3.4.2 Stability of TiO2 NTs photoelectrodes
        3.5 Brief summary
    2 nanocrystals/TiO2 nanotubes photoelectrode and its photocatalytic properties">Chapter 4 Fabrication of Pd-MnO2 nanocrystals/TiO2 nanotubes photoelectrode and its photocatalytic properties
        4.1 Introduction
    2/TiO2 NTs photoelectrode">    4.2 Fabrication of Pd-MnO2/TiO2 NTs photoelectrode
    2/TiO2 NTs photoelectrode">        4.2.1 Fabrication of MnO2/TiO2 NTs photoelectrode
    2 NTs photoelectrode">        4.2.2 Fabrication of Pd/TiO2 NTs photoelectrode
    2/TiO2 NTs photoelectrode">        4.2.3 Fabrication of Pd-MnO2/TiO2 NTs photoelectrode
    2/TiO2 NTs photoelectrode">    4.3 Characterization of Pd-MnO2/TiO2 NTs photoelectrode
    2/TiO2 NTs photoelectrode">        4.3.1 Surface morphology analysis of Pd-MnO2/TiO2 NTs photoelectrode
    2/TiO2 NTs photoelectrode">        4.3.2 Crystal structure analysis of Pd-MnO2/TiO2 NTs photoelectrode
    2/TiO2 NTs photoelectrode Pd-MnO2/TiO2 NTs photoelectrode">        4.3.3 Optical absorbance analysis of Pd-MnO2/TiO2 NTs photoelectrode Pd-MnO2/TiO2 NTs photoelectrode
    2/TiO2 NTs photoelectrode">        4.3.4 Surface composite ion analysis of Pd-MnO2/TiO2 NTs photoelectrode
    2/TiO2 NTs photoelectrode">    4.4 Photocatalytic properties analysis of Pd-MnO2/TiO2 NTs photoelectrode
    2/TiO2 NTs photoelectrode">        4.4.1 Photocatalytic degradation of Rhodamine B on Pd-MnO2/TiO2 NTs photoelectrode
    2/TiO2 NTs photoelectrode">        4.4.2 Stability of Pd-MnO2/TiO2 NTs photoelectrode
    2/TiO2 NTs photoelectrode">    4.5 Mechanism analysis for Pd-MnO2/TiO2 NTs photoelectrode
        4.6 Brief summary
    2Mn8O16 nanocrystals/TiO2 nanotubes photoelectrode and photocatalytic properties">Chapter 5 Fabrication of Ag2Mn8O16 nanocrystals/TiO2 nanotubes photoelectrode and photocatalytic properties
        5.1 Introduction
    2Mn8O16 NCs/TiO2 nanotubes photo-electrodes">    5.2 Fabrication of Ag2Mn8O16 NCs/TiO2 nanotubes photo-electrodes
    2/TiO2 nanotube">        5.2.1 Fabrication of MnO2/TiO2 nanotube
    2 NTs photoelectrodes">        5.2.2 Fabrication of Ag/TiO2 NTs photoelectrodes
    2Mn8O16 NCs/TiO2 NTs photo-electrodes">        5.2.3 Fabrication of Ag2Mn8O16 NCs/TiO2 NTs photo-electrodes
    2Mn8O16 NCs/TiO2 NTs photoelectrode">    5.3 Characterization of Ag2Mn8O16 NCs/TiO2 NTs photoelectrode
    2Mn8O16 NCs/TiO2 NTs photoelectrode">        5.3.1 Surface morphology analysis of Ag2Mn8O16 NCs/TiO2 NTs photoelectrode
    2Mn8O16 NCs/TiO2 NTs photoelectrode">        5.3.2 Crystal structure analysis of Ag2Mn8O16 NCs/TiO2 NTs photoelectrode
    2Mn8O16 NCs/TiO2 NTs photoelectrode">        5.3.3 Optical absorbance analysis of Ag2Mn8O16 NCs/TiO2 NTs photoelectrode
    2Mn8O16 NCs/TiO2 NTs photoelectrode">        5.3.4 Surface composite ion analysis of Ag2Mn8O16 NCs/TiO2 NTs photoelectrode
    2Mn8O16 NCs/TiO2 NTs photoelectrode.">    5.4 Photocatalytic properties analysis of Ag2Mn8O16 NCs/TiO2 NTs photoelectrode.
    2Mn8O16 NCs/TiO2 NTs photoelectrode">        5.4.1 Photocatalytic degradation of Rhodamine B on Ag2Mn8O16 NCs/TiO2 NTs photoelectrode
    2Mn8O16 NCs/TiO2 NTs photoelectrode">        5.4.2 Stability of Ag2Mn8O16 NCs/TiO2 NTs photoelectrode
    2Mn8O16 NCs/TiO2 NTs">    5.5 Photocatalytic mechanism of Ag2Mn8O16 NCs/TiO2 NTs
            5.5.1 Mechanism of Photogenerated radicals inα-MnO
            5.5.2 Mechanism of Photogenerated radicals in Ag2Mn8O
    2Mn8O16 NCs/TiO2 NTs photoelectrodes’advantages and significance">    5.6 Ag2Mn8O16 NCs/TiO2 NTs photoelectrodes’advantages and significance
            5.6.1 Surface properties advantage
            5.6.2 Bandgap energy advantage
            5.6.3 Degradation ratio advantage
            5.6.4 Total organic carbon removal advantage
    2Mn8O16 NCs/TiO2 NTs performance for enhanced efficiency in a prototype photo reactor">    5.7 Ag2Mn8O16 NCs/TiO2 NTs performance for enhanced efficiency in a prototype photo reactor
            5.7.1 Rhodamine B photodegradation efficiency comparison
            5.7.2 Performance evaluation of the proposed prototype photoreactor
        5.8 Brief summary
    Conclusion
    結(jié)論
        創(chuàng)新點
        展望
    References
    Appendix
    Papers published in the period of Ph.D.education
    Acknowledgements
    Resume



    本文編號:2906101

  • 資料下載
    論文發(fā)表

    本文鏈接:http://www.lk138.cn/shengtaihuanjingbaohulunwen/2906101.html


    Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

    版權申明:資料由用戶48b3b***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com