基于ESO與逆系統(tǒng)的非線性系統(tǒng)故障調(diào)節(jié)方法研究
本文選題:非線性系統(tǒng) + 擴(kuò)張狀態(tài)觀測器; 參考:《蘭州理工大學(xué)》2017年碩士論文
【摘要】:隨著當(dāng)代科技的迅猛發(fā)展,實(shí)際工程中的各種控制系統(tǒng)變得日趨復(fù)雜,其規(guī)模變得越來越龐大,系統(tǒng)本身也表現(xiàn)出更強(qiáng)的非線性。一旦系統(tǒng)發(fā)生故障,輕則其影響性能,重則導(dǎo)致整個系統(tǒng)癱瘓,出現(xiàn)災(zāi)害性事故。因此,對非線性系統(tǒng)安全性與可靠性的研究變得尤為迫切。鑒于此,考慮實(shí)際系統(tǒng)中存在的非線性、執(zhí)行器易發(fā)生故障以及外部擾動等因素,本文針對一類具有執(zhí)行器定值和時變故障的非線性系統(tǒng),提出了變增益擴(kuò)張狀態(tài)觀測器(extended state observer,ESO)、新的基于擴(kuò)張狀態(tài)觀測器的擴(kuò)張狀態(tài)濾波器(new extended state filter based on extended state observer,NESF-ESO)、新型ESF(extended state filter,ESF)三種方法;并結(jié)合逆系統(tǒng)理論進(jìn)行了故障調(diào)節(jié)的研究;最后采用力學(xué)、物理學(xué)和電子學(xué)研究中的經(jīng)典數(shù)學(xué)模型Van Der Pol振蕩器進(jìn)行了相應(yīng)仿真實(shí)驗(yàn)研究,具體內(nèi)容包括:1)基于變增益ESO與逆系統(tǒng)結(jié)合的連續(xù)系統(tǒng)故障調(diào)節(jié)方法研究針對一類非線性系統(tǒng)執(zhí)行器時變故障的容錯問題,研究了一種基于變增益擴(kuò)張狀態(tài)觀測器的逆系統(tǒng)故障調(diào)節(jié)方法。該方法首先通過設(shè)計(jì)一種時變增益,來改進(jìn)傳統(tǒng)的恒增益擴(kuò)張狀態(tài)觀測器;其次,在依據(jù)故障估計(jì)值對原系統(tǒng)進(jìn)行補(bǔ)償調(diào)節(jié)的基礎(chǔ)上,借助于逆系統(tǒng)的引入,對原非線性系統(tǒng)線性化;進(jìn)而又為其設(shè)計(jì)了魯棒保性能控制;最后,采用典型非線性系統(tǒng)Van Der Pol振蕩器,分別在發(fā)生恒值和時變故障情形下進(jìn)行了仿真研究,驗(yàn)證了所提方法的有效性與優(yōu)越性。2)基于NESF-ESO與逆系統(tǒng)結(jié)合的離散系統(tǒng)故障調(diào)節(jié)方法研究針對傳統(tǒng)非線性系統(tǒng)故障診斷方法中存在的線性化誤差、濾波發(fā)散等問題,首先構(gòu)造出一種可用于故障診斷的擴(kuò)張狀態(tài)濾波器,并在此基礎(chǔ)上推證出了增廣系統(tǒng)漸近穩(wěn)定的充分條件,并借助于原系統(tǒng)中已知的非線性動態(tài)進(jìn)行故障的分離;其次,依據(jù)分離出的故障估計(jì)值對原系統(tǒng)進(jìn)行補(bǔ)償調(diào)節(jié),再輔之以逆系統(tǒng)方法,對原非線性系統(tǒng)進(jìn)行線性化;進(jìn)而考慮逆建模誤差的存在,設(shè)計(jì)了離散時間下的魯棒保性能控制器;最后,通過仿真實(shí)驗(yàn)對比驗(yàn)證了該方法的有效性與優(yōu)越性。3)基于新型ESF與逆系統(tǒng)結(jié)合的離散系統(tǒng)故障調(diào)節(jié)方法研究針對傳統(tǒng)濾波算法ESF效果一般的問題,研究了一種新型ESF對含噪離散非線性系統(tǒng)故障濾波及調(diào)節(jié)方法。首先借鑒擴(kuò)張狀態(tài)濾波器思想,設(shè)計(jì)一種新型的ESF,采用遞歸學(xué)習(xí)方法來提高對含噪系統(tǒng)的狀態(tài)及故障估計(jì)的準(zhǔn)確性;其次,利用新型ESF濾波后的故障估計(jì)值作為故障調(diào)節(jié)項(xiàng),并結(jié)合離散逆系統(tǒng)控制算法,對原非線性系統(tǒng)進(jìn)行線性化;進(jìn)而考慮逆系統(tǒng)控制方法未形成閉環(huán)以及存在逆建模誤差的不足,設(shè)計(jì)了一種離散時間下的魯棒保性能控制器;最后,仍采用經(jīng)典非線性數(shù)學(xué)模型Van Der Pol振蕩器對其進(jìn)行有效性驗(yàn)證。
[Abstract]:With the rapid development of modern science and technology, various control systems in practical engineering become more and more complex, their scale becomes larger and larger, and the system itself shows stronger nonlinearity. Once the system fails, it will affect the performance of the system, and the whole system will be paralyzed and catastrophic accidents will occur. Therefore, it is urgent to study the safety and reliability of nonlinear systems. In view of this, considering the factors such as nonlinearity, actuator fault and external disturbance, this paper deals with a class of nonlinear systems with actuator fixed value and time-varying fault. This paper presents three methods of extended state observer, new extended state filter based on extended state observer, new extended state filter based on extended state observer, new extended state filter and new ESF, and studies the fault regulation of ESOs based on inverse system theory, and proposes three methods of extended state observer (ESO), new extended state filter (ESF) based on extended state observer (ESO), and new extended state filter (ESF) based on extended state observer (ESO), which is based on extended state observer (ESO). Finally, the Van Der Pol oscillator, a classical mathematical model in mechanics, physics and electronics, is used to carry out the corresponding simulation experiments. The specific contents include: (1) based on the combination of variable gain ESO and inverse system, the fault tolerance problem of a class of nonlinear systems with time-varying actuator faults is studied, which is based on the combination of variable gain ESO and inverse system. A fault regulation method for inverse system based on variable gain extended state observer is studied. Firstly, a time-varying gain is designed to improve the traditional constant gain extended state observer. Secondly, based on the compensation and adjustment of the original system based on the fault estimation, the inverse system is introduced. The linearization of the original nonlinear system and the design of robust guaranteed cost control for the nonlinear system are presented. Finally, the Van Der Pol oscillator of a typical nonlinear system is simulated in the case of constant value and time-varying faults, respectively. The effectiveness and superiority of the proposed method are verified. 2) based on the NESF-ESO and inverse system fault regulation method, the linearization error and filtering divergence in the traditional nonlinear system fault diagnosis method are studied. Firstly, an extended state filter for fault diagnosis is constructed, and a sufficient condition for the asymptotic stability of the augmented system is derived, and the fault separation is carried out with the help of the known nonlinear dynamics in the original system. The original system is linearized by the inverse system method, and the robust guaranteed cost controller under discrete time is designed, considering the existence of the inverse modeling error, according to the separated fault estimation value, the original system is compensated and adjusted, and the inverse system method is used to linearize the original nonlinear system. Finally, the effectiveness and superiority of this method are verified by the simulation experiments. 3) based on the combination of new ESF and inverse system, the fault adjustment method of discrete system is studied, aiming at the general problem of the traditional filtering algorithm ESF. A novel ESF fault filtering and regulating method for noisy discrete nonlinear systems is studied. First, a new ESFs is designed based on the idea of extended state filter. The recursive learning method is used to improve the accuracy of the state and fault estimation of noisy systems. Secondly, the fault estimation value of the new ESF filter is used as the fault adjustment term. Combining with the control algorithm of discrete inverse system, the original nonlinear system is linearized, and a robust guaranteed cost controller under discrete time is designed considering the lack of closed loop and inverse modeling error in inverse system control. Finally, the classical nonlinear mathematical model Van Der Pol oscillator is used to verify its validity.
【學(xué)位授予單位】:蘭州理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP277
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王正齊;周云紅;朱志瑩;盧冰洋;;基于逆系統(tǒng)內(nèi)模的無軸承異步電機(jī)解耦控制[J];控制工程;2016年11期
2 劉蕓;;內(nèi)模控制及逆系統(tǒng)算法在船舶運(yùn)動控制中的仿真研究[J];艦船科學(xué)技術(shù);2016年21期
3 劉慶鋒;粟時平;劉桂英;呂超;;基于神經(jīng)網(wǎng)絡(luò)逆系統(tǒng)方法的鏈?zhǔn)絊TATCOM線性化解耦控制[J];電測與儀表;2016年13期
4 董鑫;張世峰;許四長;關(guān)慧敏;;基于LS-SVM逆系統(tǒng)的焦?fàn)t集氣管壓力系統(tǒng)內(nèi)?刂芠J];重慶大學(xué)學(xué)報(bào);2016年03期
5 于霜;劉國海;梅從立;程錦翔;;生物發(fā)酵過程中VIP優(yōu)化神經(jīng)網(wǎng)絡(luò)逆系統(tǒng)的軟測量方法[J];南京理工大學(xué)學(xué)報(bào);2015年04期
6 高敬禮;文成林;劉妹琴;;基于奇異值分解和疊加法的慢速小目標(biāo)檢測算法[J];上海交通大學(xué)學(xué)報(bào);2015年06期
7 周盼;李玩幽;率志君;;多激勵識別的自適應(yīng)延遲逆系統(tǒng)方法[J];振動與沖擊;2014年22期
8 胡立坤;王,
本文編號:2034819
本文鏈接:http://www.lk138.cn/kejilunwen/zidonghuakongzhilunwen/2034819.html