結(jié)合粒子群尋優(yōu)與遺傳重采樣的RBPF算法
發(fā)布時(shí)間:2018-06-15 03:10
本文選題:同時(shí)定位與地圖構(gòu)建 + Rao-Blackwellized粒子濾波器 ; 參考:《計(jì)算機(jī)工程》2016年11期
【摘要】:針對(duì)Rao-Blackwellized粒子濾波器(RBPF)重采樣過(guò)程存在粒子衰竭、提議分布精確度不高的問(wèn)題,提出一種改進(jìn)的RBPF算法。為提高RBPF算法提議分布精確性,在改進(jìn)的算法中將機(jī)器人里程計(jì)信息和激光傳感器采集的距離信息進(jìn)行融合,在算法中引入粒子群尋優(yōu)策略,通過(guò)粒子間能效吸引力來(lái)調(diào)整采樣粒子集,同時(shí)對(duì)重采樣中權(quán)值較小的粒子進(jìn)行遺傳變異操作,緩解粒子枯竭現(xiàn)象,提高機(jī)器人位姿估計(jì)一致性,并維持粒子集的多樣性。在基于機(jī)器人操作系統(tǒng)和配有URG激光傳感器的Pioneer3-DX機(jī)器人平臺(tái)上對(duì)改進(jìn)RBPF算法進(jìn)行可靠性驗(yàn)證。實(shí)驗(yàn)結(jié)果表明,改進(jìn)算法在兼顧粒子集多樣性的同時(shí)能顯著提高機(jī)器人位姿估計(jì)精確性。
[Abstract]:An improved RBPF algorithm is proposed to solve the problem of particle failure and low accuracy of proposed distribution in the resampling process of Rao-Blackwellized particle filter (RBPF). In order to improve the distribution accuracy of RBPF algorithm, the robot odometer information and the distance information collected by laser sensor are fused in the improved algorithm, and the particle swarm optimization strategy is introduced in the algorithm. The sampling particle set is adjusted by energy efficiency attraction among particles, and the particles with small weight in resampling are operated by genetic variation, which can alleviate the phenomenon of particle depletion, improve the consistency of robot pose estimation, and maintain the diversity of particle sets. The reliability of the improved RBPF algorithm is verified on the Pioneer3-DX robot platform based on robot operating system and with URG laser sensor. Experimental results show that the improved algorithm can significantly improve the accuracy of robot pose estimation while taking into account the diversity of particle sets.
【作者單位】: 重慶郵電大學(xué)信息無(wú)障礙工程研發(fā)中心;
【基金】:國(guó)家科技部國(guó)際合作項(xiàng)目(2010DFA12160) 重慶市科技攻關(guān)項(xiàng)目(CSTC,2010AA2055)
【分類(lèi)號(hào)】:TP242;TP18
,
本文編號(hào):2020329
本文鏈接:http://www.lk138.cn/kejilunwen/zidonghuakongzhilunwen/2020329.html
最近更新
教材專(zhuān)著