半導(dǎo)體金屬氧化物傳感器的制備與性能研究
發(fā)布時(shí)間:2018-06-03 05:46
本文選題:氣體傳感器 + p-Co_3O_4/n-SnO_2; 參考:《西南交通大學(xué)》2017年碩士論文
【摘要】:近年來(lái),隨著人民生活水平的提高以及對(duì)環(huán)保的日益重視,人們對(duì)各種有毒、有害氣體的檢測(cè)提出了更高的要求。基于金屬氧化物的半導(dǎo)體型氣體傳感器因具有較低的成本和優(yōu)異的氣敏特性成為氣體傳感器領(lǐng)域的研究熱點(diǎn)。氣體傳感器的氣敏性能取決于傳感材料的結(jié)構(gòu)特性。因此制備高性能氣敏材料一直是半導(dǎo)體氣體傳感器的研究重點(diǎn)和難點(diǎn)。本論文以合成出高性能的氣敏材料為研究目標(biāo),通過(guò)調(diào)控氣敏材料的形貌結(jié)構(gòu)來(lái)對(duì)其氣敏性能進(jìn)行了研究。主要研究?jī)?nèi)容如下:(1)利用p-n異質(zhì)結(jié)的界面協(xié)同效應(yīng)來(lái)調(diào)節(jié)氣敏材料的氣敏選擇性。本文首先采用操作簡(jiǎn)單的浸泡煅燒法制備了不同Co/Sn摩爾比的p-Co_3O_4/n-SnO_2 p-n異質(zhì)結(jié)復(fù)合材料,并對(duì)其氣敏性能進(jìn)行了系統(tǒng)研究。實(shí)驗(yàn)結(jié)果表明,該p-Co_3O_4/n-SnO_2復(fù)合氣敏材料對(duì)典型還原氣體如CO,H_2S和NH_3顯示為n型氣敏響應(yīng),對(duì)H_2則表現(xiàn)出獨(dú)特的p型響應(yīng)。我們將該獨(dú)特的氣敏響應(yīng)反轉(zhuǎn)行為歸結(jié)于p-Co_3O_4/n-SnO_2異質(zhì)結(jié)中SnO_2和Co_3O_4對(duì)還原氣體具有不同的氣敏反應(yīng)活性而導(dǎo)致的勢(shì)壘高度調(diào)制有關(guān)。該研究工作證明,利用異質(zhì)結(jié)材料對(duì)目標(biāo)氣體的不對(duì)稱氣體反應(yīng)活性可以實(shí)現(xiàn)調(diào)節(jié)p-n異質(zhì)結(jié)勢(shì)壘高度的調(diào)節(jié),為復(fù)合氣敏材料氣敏特性的優(yōu)化提供了重要的理論支撐。(2)研究了不同形貌Ag_3PO_4納米材料的室溫NH_3氣敏性能。目前關(guān)于Ag_3PO_4作為光催化劑的相關(guān)報(bào)道較多,而對(duì)將其作為氣敏材料用于氣體檢測(cè)還鮮有報(bào)道。我們利用離子交換法和固相研磨法制備出了納米管和納米顆粒兩種不同形貌Ag_3PO_4納米材料,并研究了形貌對(duì)其NH_3室溫氣敏性能的影響。氣敏性能測(cè)試結(jié)果表明,相較于Ag_3PO_4納米顆粒,Ag_3PO_4納米管具有更加優(yōu)異的氣敏特性,在室溫下對(duì)NH_3具有更高的靈敏度和選擇性,檢測(cè)限可低至1Oppm。該工作對(duì)研究Ag_3PO_4的室溫氣敏機(jī)理以及形貌對(duì)其氣敏反應(yīng)活性的影響規(guī)律奠定了基礎(chǔ)。
[Abstract]:In recent years, with the improvement of people's living standards and the increasing attention to environmental protection, people put forward higher requirements for the detection of various toxic and harmful gases. Semiconductor gas sensor based on metal oxide has become a research hotspot in the field of gas sensor because of its low cost and excellent gas sensitivity. The gas sensing performance of the gas sensor depends on the structure of the sensing material. Therefore, the preparation of high-performance gas-sensitive materials has been the focus and difficulty of semiconductor gas sensors. The aim of this thesis is to synthesize high performance gas sensing materials and to study their gas sensing properties by adjusting the morphology and structure of the gas sensing materials. The main contents of this study are as follows: (1) the gas sensing selectivity of gas sensing materials is regulated by the interface synergy of p-n heterojunction. In this paper, p-Co_3O_4/n-SnO_2 p-n heterojunction composites with different Co/Sn molar ratios were prepared by a simple soaking and calcination method, and their gas-sensing properties were systematically studied. The experimental results show that the p-Co_3O_4/n-SnO_2 composite gas sensing material exhibits n-type gas sensing response to typical reductive gases such as COG / H _ 2S and NH_3, and a unique p-type response to H _ (2). We attribute this unique gas sensing response inversion behavior to the barrier height modulation of SnO_2 and Co_3O_4 in p-Co_3O_4/n-SnO_2 heterostructures due to their different gas-sensing reactivity to reducing gases. It is proved that the potential barrier height of p-n heterojunction can be adjusted by using the asymmetric gas reaction activity of the heterojunction material to the target gas. It provides an important theoretical support for the optimization of gas-sensing properties of composite gas-sensing materials. (2) the room-temperature NH_3 gas-sensing properties of Ag_3PO_4 nanomaterials with different morphologies are studied. At present, there are many reports about Ag_3PO_4 as photocatalyst, but there are few reports that Ag_3PO_4 is used as gas sensing material for gas detection. Two kinds of Ag_3PO_4 nanomaterials with different morphologies were prepared by ion exchange method and solid phase grinding method. The effect of morphology on the gas sensing properties of NH_3 at room temperature was studied. The results of gas sensitivity test showed that compared with Ag_3PO_4 nanoparticles, the gas sensing properties of the nanotubes were higher than those of Ag_3PO_4 nanoparticles. The sensitivity and selectivity of NH_3 were higher at room temperature, and the detection limit could be as low as 1 Oppm. This work laid a foundation for studying the mechanism of Ag_3PO_4 gas sensing at room temperature and the effect of morphology on its gas sensing reaction activity.
【學(xué)位授予單位】:西南交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP212
【參考文獻(xiàn)】
相關(guān)期刊論文 前3條
1 WANG HaiLin;NIE Lie;LI Jing;WANG YuFei;WANG Gang;WANG JunHui;HAO ZhengPing;;Characterization and assessment of volatile organic compounds (VOCs) emissions from typical industries[J];Chinese Science Bulletin;2013年07期
2 李建昌;韓小波;姜永輝;巴德純;;金屬氧化物半導(dǎo)體薄膜氣敏機(jī)理研究進(jìn)展[J];功能材料與器件學(xué)報(bào);2011年02期
3 劉海峰;彭同江;孫紅娟;馬國(guó)華;段濤;;氣敏材料敏感機(jī)理研究進(jìn)展[J];中國(guó)粉體技術(shù);2007年04期
,本文編號(hào):1971694
本文鏈接:http://www.lk138.cn/kejilunwen/zidonghuakongzhilunwen/1971694.html
最近更新
教材專著