中国韩国日本在线观看免费,A级尤物一区,日韩精品一二三区无码,欧美日韩少妇色

當(dāng)前位置:主頁 > 科技論文 > 自動(dòng)化論文 >

基于隨機(jī)賦權(quán)網(wǎng)絡(luò)的符號(hào)值數(shù)據(jù)分類

發(fā)布時(shí)間:2018-05-30 07:02

  本文選題:隨機(jī)賦權(quán)網(wǎng)絡(luò) + 前饋神經(jīng)網(wǎng)絡(luò) ; 參考:《河北大學(xué)》2017年碩士論文


【摘要】:隨著大數(shù)據(jù)時(shí)代的來臨,數(shù)據(jù)的規(guī)模越來越大,同時(shí)數(shù)據(jù)類型也呈現(xiàn)出多樣性。數(shù)據(jù)有數(shù)值型的,也有符號(hào)型數(shù)據(jù)及符號(hào)型和數(shù)值型的混合型數(shù)據(jù)。如何從各種類型的海量數(shù)據(jù)中快速準(zhǔn)確地挖掘出有價(jià)值的知識(shí),也包括從符號(hào)值數(shù)據(jù)中挖掘有價(jià)值的知識(shí),已成為機(jī)器學(xué)習(xí)領(lǐng)域的研究熱點(diǎn),具有重要的應(yīng)用價(jià)值。分類問題是機(jī)器學(xué)習(xí)研究的主要問題之一,本文的主要工作是研究基于隨機(jī)賦權(quán)網(wǎng)絡(luò)的符號(hào)值數(shù)據(jù)分類。隨機(jī)賦權(quán)神經(jīng)網(wǎng)絡(luò)也稱為極速學(xué)習(xí)機(jī)(Extreme Learning Machine,ELM),其主要思想是通過隨機(jī)化方法提高學(xué)習(xí)速度。本文研究了符號(hào)值隨機(jī)賦權(quán)神經(jīng)網(wǎng)絡(luò),并與C4.5算法從三個(gè)方面進(jìn)行了實(shí)驗(yàn)比較:(1)時(shí)間復(fù)雜度與泛化能力;(2)訓(xùn)練樣例大小對(duì)算法性能影響;(3)處理不完整數(shù)據(jù)的能力。得出了如下有價(jià)值的結(jié)論:(1)ELM和C4.5在測(cè)試精度上,沒有本質(zhì)的差別,但是ELM具有更快的學(xué)習(xí)速度;(2)測(cè)試精度并不總是隨著樣例數(shù)的增加而增加;(3)與C4.5相比,ELM具有更強(qiáng)的抗噪能力。
[Abstract]:With the advent of big data era, the scale of data becomes larger and larger, and the data types also present diversity. There are numerical, symbolic and mixed data. How to quickly and accurately mine valuable knowledge from all kinds of massive data, including symbolic value data, has become a hot topic in the field of machine learning and has important application value. Classification problem is one of the main problems in machine learning. The main work of this paper is to study the classification of symbolic value data based on stochastic weight network. Stochastic weighted neural network (RWNN) is also called extreme Learning Machine (ELMN). Its main idea is to improve the learning speed by means of randomization. In this paper, the symbolic value random weighted neural network is studied and compared with C4.5 algorithm from three aspects: 1) time complexity and generalization ability / 2) the ability of training sample size to affect the performance of the algorithm is compared with that of C4.5 algorithm in processing incomplete data. The results show that there is no essential difference between ELM and C4.5 in testing accuracy, but ELM has a faster learning speed. The test accuracy does not always increase with the increase of sample number. Compared with C4.5, ELM has stronger anti-noise ability.
【學(xué)位授予單位】:河北大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP181

【參考文獻(xiàn)】

相關(guān)期刊論文 前8條

1 翟俊海;臧立光;張素芳;;在線序列主動(dòng)學(xué)習(xí)方法[J];計(jì)算機(jī)科學(xué);2017年01期

2 翟俊海;臧立光;張素芳;;隨機(jī)權(quán)分布對(duì)極限學(xué)習(xí)機(jī)性能影響的實(shí)驗(yàn)研究[J];計(jì)算機(jī)科學(xué);2016年12期

3 楊菊;袁玉龍;于化龍;;基于蟻群優(yōu)化的極限學(xué)習(xí)機(jī)選擇性集成學(xué)習(xí)算法[J];計(jì)算機(jī)科學(xué);2016年10期

4 賈晨光;陳桂芬;;基于粗糙集C4.5算法的應(yīng)用[J];中國(guó)農(nóng)機(jī)化學(xué)報(bào);2016年07期

5 黃秀霞;孫力;;C4.5算法的優(yōu)化[J];計(jì)算機(jī)工程與設(shè)計(jì);2016年05期

6 張沛洲;王熙照;顧迪;趙士欣;;基于共軛梯度的極速學(xué)習(xí)機(jī)[J];計(jì)算機(jī)應(yīng)用;2015年10期

7 王珊;王會(huì)舉;覃雄派;周p,

本文編號(hào):1954390


資料下載
論文發(fā)表

本文鏈接:http://www.lk138.cn/kejilunwen/zidonghuakongzhilunwen/1954390.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶e485f***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com