基于半盲反卷積源分離的胎兒心電信號提取研究
[Abstract]:Fetal electrocardiogram is one of the most effective perinatal fetal monitoring methods. By analyzing the changes of fetal ECG waveform, we can find out the pathological changes of fetus during intrauterine development as early as possible, so as to reduce the rate of injury and mortality of newborn infants. However, the signal-to-noise ratio of fetal ECG signal is low and often interfered by maternal ECG and other strong noises in the mixed ECG signals collected by non-invasive method in pregnant women's abdominal wall. Therefore, how to extract clear fetal ECG signals has always been an important research topic in fetal monitoring. Blind source separation (BSS) is the most promising fetal ECG signal extraction algorithm at present. However, the existing BSS-based FECG extraction algorithms usually use the linear instantaneous mixed model and underutilize the ECG signal feature information. As a result, there are still some problems, such as low accuracy and vague physiological meaning. In this paper, a semi-blind fetal ECG signal extraction algorithm based on convolution model is proposed based on signal characteristics and mixed model. The main contents are as follows: (1) analyze the characteristics of fetal ECG signal and construct the linear convolution mixed model. By analyzing the electrophysiological characteristics of fetal ECG signals, the rationality of using blind deconvolution method to extract fetal ECG signals was verified by using non-minimum phase characteristics. Combining the characteristics of actual ECG signals and the mixed model of blind deconvolution source separation, The linear convolution hybrid model of abdominal ECG signal is constructed and the method of fetal ECG signal extraction based on ECG characteristics is presented. (2) based on the mixed model of cyclostationary and signal convolution, a semi-blind deconvolution source separation algorithm is proposed. Semi-blind deconvolution single-source separation algorithm introduces delay and cyclic frequency parameters into the construction of objective function based on non-Gaussian metric, and achieves the effective separation of single-source signal of maternal fetal ECG by maximizing the objective function of gradient method. In order to improve the accuracy of fetal ECG signal estimation, the least square inverse filtering algorithm is used to improve the time domain subtraction method in traditional BSS. The simulation results show that when the waveform of the mother-fetus overlaps in time domain, The least square inverse filtering algorithm is better than the traditional time domain subtraction method in preserving the integrity of fetal ECG waveform. (3) based on the principle of semi-blind deconvolution source separation algorithm, A complete method of fetal ECG signal extraction was proposed. Combined with semi-blind deconvolution single source separation and maternal ECG cancellation algorithm, a new method of fetal ECG signal extraction is proposed, which includes mixed ECG signal de-noising pre-processing, feature parameter estimation and fetal ECG signal extraction and enhancement. The experimental results were analyzed and the semi-blind deconvolution source separation method was compared with the traditional BSS. The experimental results showed that The fetal ECG signal extracted by the semi-blind deconvolution source separation method is very close to the fetal ECG reference signal collected by the fetal scalp electrode in both fetal heart rate and waveform. And it is better than traditional BSS. in visual waveform and signal to noise ratio.
【學位授予單位】:重慶大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:R714.5;TN911.7
【相似文獻】
相關(guān)期刊論文 前3條
1 張軼文;;反卷積法用于單光子發(fā)射計算機層析X射線攝影(SPECT)中散射補償與窗減法技術(shù)的比較[J];國外醫(yī)學.生物醫(yī)學工程分冊;1988年04期
2 翟洪昌;郭雪萍;翁旭初;崔淑范;祝一虹;;健康成人手指運動腦功能成像數(shù)據(jù)聚類與反卷積的比較研究[J];中國臨床康復;2005年44期
3 ;[J];;年期
相關(guān)會議論文 前6條
1 吳新星;李明;李目海;單佩韋;;網(wǎng)絡(luò)微積分中最小加反卷積的研究[A];2008'中國信息技術(shù)與應用學術(shù)論壇論文集(一)[C];2008年
2 盧少平;;基于盲反卷積的圖像上采樣算法[A];第六屆和諧人機環(huán)境聯(lián)合學術(shù)會議(HHME2010)、第19屆全國多媒體學術(shù)會議(NCMT2010)、第6屆全國人機交互學術(shù)會議(CHCI2010)、第5屆全國普適計算學術(shù)會議(PCC2010)論文集[C];2010年
3 李棟棟;郭學彬;瞿安連;徐濤;;應用三維熒光反卷積顯微技術(shù)觀察活體細胞[A];中國生理學會第21屆全國代表大會暨學術(shù)會議論文摘要匯編[C];2002年
4 熊俊;李棟棟;瞿安連;;活體細胞四維圖像科學可視化方法的研究[A];中國生物醫(yī)學工程學會第六次會員代表大會暨學術(shù)會議論文摘要匯編[C];2004年
5 蘇兆鋒;楊海亮;孫劍鋒;叢培天;王亮平;;“強光一號”加速器能譜測量實驗中的波形還原問題初探[A];第十二屆反應堆數(shù)值計算與粒子輸運學術(shù)會議論文集[C];2008年
6 李育杉;戴憲華;劉軍;;一種時變MIMO系統(tǒng)盲反卷積模型[A];第十屆全國信號處理學術(shù)年會(CCSP-2001)論文集[C];2001年
相關(guān)博士學位論文 前2條
1 孫小君;最優(yōu)和自校正多傳感器信息融合白噪聲反卷積估值器[D];黑龍江大學;2010年
2 婁帥;多尺度變換域圖像反卷積理論研究[D];哈爾濱工業(yè)大學;2010年
相關(guān)碩士學位論文 前10條
1 李鶴;利用反卷積提高布里淵光纖傳感系統(tǒng)空間分辨率的研究[D];哈爾濱工業(yè)大學;2015年
2 孫世豹;基于傳遞函數(shù)評價的共焦顯微圖像反卷積降噪處理算法研究[D];哈爾濱工業(yè)大學;2015年
3 馬威鋒;CLAD反卷積方法中噪聲抑制效應的探究[D];南方醫(yī)科大學;2015年
4 鄒岸;聽覺誘發(fā)電位的一種刺激序列優(yōu)化技術(shù)及反卷積方法[D];南方醫(yī)科大學;2015年
5 袁雪寒;基于反卷積網(wǎng)絡(luò)的圖像模式學習及應用[D];華南理工大學;2016年
6 陶姣;基于半盲反卷積源分離的胎兒心電信號提取研究[D];重慶大學;2016年
7 蔡曉燕;醫(yī)學超聲信號反卷積研究[D];東南大學;2006年
8 陳揚鈦;反卷積網(wǎng)絡(luò)圖像表述與復原[D];國防科學技術(shù)大學;2011年
9 郭淑貞;基于高階譜和小波分析的超聲醫(yī)學圖像反卷積研究[D];東南大學;2005年
10 王佳偉;統(tǒng)一和通用的信息融合白噪聲反卷積估值器[D];黑龍江大學;2007年
,本文編號:2444972
本文鏈接:http://www.lk138.cn/kejilunwen/xinxigongchenglunwen/2444972.html