改進(jìn)LMD算法在管道泄漏中的應(yīng)用研究
[Abstract]:In view of the difficulty of extracting leakage characteristic information and the low accuracy of leak location in the process of natural gas pipeline leakage detection, this paper applies the local mean decomposition (Local Mean Decomposition,LMD) algorithm to pipeline leakage detection to realize the decomposition of pipeline leakage signal. Feature extraction and leak location. Firstly, this paper introduces the theoretical algorithm of local mean decomposition, and applies it to signal decomposition. As an effective method to deal with non-stationary random signals, LMD has the adaptive property and completeness of signal decomposition. However, due to the influence of the algorithm itself, it is easy to produce modal aliasing. Aiming at the phenomenon of modal aliasing, the problem of modal aliasing in the process of LMD decomposition is suppressed by means of the total local mean decomposition algorithm (Ensemble Local Mean Decomposition,ELMD) and the auxiliary noise technique. Secondly, the useful information is often affected and interfered by various noises in the transmission process, which reduces or confuses the useful signals in the signal source. In order to enhance the useful signal suppress the noise interference and ensure that the extracted eigenvalue can represent the signal feature it is necessary to pre-process the original signal. In order to avoid the technical loophole in the wavelet decomposition process, a ELMD spectral kurtosis joint denoising algorithm based on wavelet packet is proposed. On the basis of the effective PF (Product Function) components decomposed by ELMD, the optimal parameters of spectral kurtosis and the energy distribution of wavelet packets are used to determine the reconstructed nodes of the signal, and the signal denoising of each PF component is completed. Each PF component after denoising can characterize the characteristics of the original signal at different scales. Thirdly, by analyzing the characteristics of pipeline signals, the time-frequency analysis theory is studied, and an adaptive optimal kernel (Adaptive Optimal Kernel,AOK spectral entropy parameter based on time-frequency domain is proposed to quantitatively describe the time-frequency characteristics of the signals. The corresponding AOK parameters are extracted from each PF component to determine whether there is leakage or not and the working conditions of the pipeline are preliminarily determined. It has a good degree of distinction and good recognition accuracy for the normal operation of the pipeline, pipeline leakage and pipe percussion. Finally, the pipeline leak detection algorithm based on ELMD multi-scale correlation is introduced. Through the fusion of the PF component obtained by ELMD decomposition and the cross-correlation algorithm, the delay difference of different characteristic scales is obtained, and the location of pipeline leakage is completed. The algorithm is more accurate than that obtained by correlation calculation using the original signal directly, and it is helpful to improve the location accuracy of pipeline leakage.
【學(xué)位授予單位】:東北石油大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TN911.7
【參考文獻(xiàn)】
中國(guó)期刊全文數(shù)據(jù)庫(kù) 前10條
1 田野;;基于次聲波的輸氣管道泄漏監(jiān)測(cè)系統(tǒng)[J];油氣田地面工程;2016年10期
2 張曉威;劉錦昆;陳同彥;季文峰;馮新;;基于分布式光纖傳感器的管道泄漏監(jiān)測(cè)試驗(yàn)研究[J];水利與建筑工程學(xué)報(bào);2016年03期
3 孫潔娣;肖啟陽(yáng);溫江濤;王飛;;改進(jìn)LMD及高階模糊度函數(shù)的管道泄漏定位[J];儀器儀表學(xué)報(bào);2015年10期
4 孫潔娣;肖啟陽(yáng);溫江濤;王飛;;基于LMD包絡(luò)譜熵及SVM的天然氣管道微小泄漏孔徑識(shí)別[J];機(jī)械工程學(xué)報(bào);2014年20期
5 王保群;林燕紅;焦中良;;我國(guó)天然氣管道現(xiàn)狀與發(fā)展方向[J];國(guó)際石油經(jīng)濟(jì);2013年08期
6 孟令雅;付俊濤;李玉星;劉翠偉;劉光曉;;輸氣管道泄漏音波信號(hào)傳播特性及預(yù)測(cè)模型[J];中國(guó)石油大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年02期
7 劉小龍;王華;趙淑娥;陳建軍;魏軍;劉強(qiáng);;自適應(yīng)最優(yōu)核時(shí)頻分布在地震儲(chǔ)層預(yù)測(cè)中的應(yīng)用[J];中南大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年08期
8 方亮;蘇旭;趙曉龍;;天然氣長(zhǎng)輸管道泄漏檢測(cè)技術(shù)進(jìn)展[J];化工裝備技術(shù);2012年03期
9 何存富;鄭興強(qiáng);駱建偉;杭利軍;吳斌;;消偏型Sagnac光纖管道泄漏檢測(cè)系統(tǒng)及其穩(wěn)定性研究[J];中國(guó)激光;2012年02期
10 范玉生;;小波和小波包變換在心電信號(hào)去噪中的應(yīng)用[J];重慶科技學(xué)院學(xué)報(bào)(自然科學(xué)版);2010年01期
中國(guó)碩士學(xué)位論文全文數(shù)據(jù)庫(kù) 前6條
1 張冉;城市管道燃?xì)夥佬孤┍O(jiān)測(cè)技術(shù)研究[D];東華理工大學(xué);2016年
2 胡月;基于負(fù)壓波原理的輸油管線泄漏監(jiān)測(cè)技術(shù)研究[D];長(zhǎng)春理工大學(xué);2016年
3 薄瑞瑞;基于LMD的振動(dòng)信號(hào)處理及故障特征提取研究[D];內(nèi)蒙古大學(xué);2015年
4 段樂(lè)崢;基于HHT的供水管道泄漏檢測(cè)研究[D];廈門(mén)大學(xué);2014年
5 劉盈;基于次聲波的煤氣管道泄漏監(jiān)測(cè)系統(tǒng)研究[D];電子科技大學(xué);2010年
6 王久龍;基于紅外成像技術(shù)的埋地管道泄漏定位實(shí)驗(yàn)研究[D];大慶石油學(xué)院;2008年
,本文編號(hào):2310549
本文鏈接:http://www.lk138.cn/kejilunwen/xinxigongchenglunwen/2310549.html