海氣湍流信道中的光束偏振起伏
[Abstract]:As a new technology in the field of communication, wireless optical communication has the characteristics of portable equipment, good confidentiality and large amount of transmission information. Polarization of light has important application value in classical and quantum fields. Since the polarization state of light can store information, wireless optical communication can be realized by using this characteristic. However, the stability of wireless optical communication is affected by the interference of bad weather and turbulence when the beam propagates in the atmosphere. Therefore, the study of beam propagation in turbulent channels has not only theoretical significance, but also plays an important role in guiding the design of quantum communication systems in free space. The main work is as follows: in this paper, the polarization fluctuation of Gauss-Schell beam propagation in air-sea turbulent channel is discussed. By using the generalized Huygens-Fresnel integral and the Rytov approximation, the polarization model of beam propagation in air-sea turbulent channel is established, and the transverse coherent length of spherical wave is derived. In addition, based on the cross spectral density matrix, an average polarization model of Gaussian Schell electromagnetic beam is established. Finally, the polarization fluctuation characteristics of Gauss-Schell beam propagating in the turbulent channel between Kormogorov and non-Kolmogorov at sea and air are analyzed in detail by numerical simulation. The difference of polarization fluctuation between sea and land air channel is compared, and the following conclusions are obtained: 1. The degree of polarization increases with the increase of the number of photons and the coherent width of the light source when the Gaussian Schell beam propagates in the Kelmogorov turbulent channel. By comparing the polarization difference between the sea and the land atmosphere in Kolmogorov turbulent channel, it is found that the turbulent attenuation effect of the beam propagating in the sea and air turbulence channel is more obvious than that in the land air channel. That is to say, the depolarization effect in the air-sea turbulent channel is strong. 2. 2. When the Gaussian Schell beam propagates in a non-Kolmogorov turbulent channel at sea and air, it is found that the increase of the internal scale of turbulence can help us to obtain larger transverse coherent length and higher degree of polarization of spherical waves. The influence of the external scale of turbulence on the degree of polarization can be neglected. By introducing anisotropy factor analysis, it is concluded that the higher the degree of anisotropy of turbulence is, the stronger the degree of polarization is. Based on the cross spectral density matrix, an average degree of polarization model of Gauss-Schell electromagnetic beam propagation in land-air and sea-air turbulent channels is established. The average degree of polarization increases with the increase of the non-Kolmogorov spectral exponent, and the Gauss-Schell electromagnetic beam has a smaller 未 _ (yy), 未 _ (xx), _ Ax and a larger ASP _ y parameter. It can reduce the interference of light beam propagating in atmospheric turbulence. That is to say, high quality polarization communication can be achieved by selecting specific parameters.
【學(xué)位授予單位】:江南大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TN929.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 蒲繼雄;陳金鎧;;各向異性高斯-斯克爾模型光束的傳輸特性[J];激光技術(shù);1991年02期
2 曉晨;;采用導(dǎo)光裝置的YAG激光焊接[J];激光與光電子學(xué)進(jìn)展;1989年09期
3 黎昌金;邵毅全;;光束的幾何排布對多重徑向陣列光束傳輸特性的影響[J];激光雜志;2012年03期
4 黎昌金;羅亞梅;;非傍軸厄米-高斯光束多重徑向陣列光束的傳輸特性[J];紅外與激光工程;2013年S1期
5 雷大軍;董輝;;一種新的三維有限差分光束傳輸法[J];半導(dǎo)體光電;2012年04期
6 何武光;吳健;楊春平;;環(huán)形光束大氣傳輸數(shù)值模擬與分析[J];激光與紅外;2011年02期
7 向?qū)庫o;吳振森;王明軍;;部分相干高斯-謝爾光束在大氣湍流中的展寬與漂移[J];紅外與激光工程;2013年03期
8 呂百達(dá);胡玉芳;季小玲;丁桂林;周興靈;;光束變換光學(xué)及其應(yīng)用[J];紅外與激光技術(shù);1991年03期
9 柳建;李樹民;趙杰;王世慶;;鏡面熱變形及吹氣流場對光束的聯(lián)合影響[J];光學(xué)精密工程;2014年08期
10 高春清,魏光輝;像散光束的光束參數(shù)與光強(qiáng)二階矩的關(guān)系[J];光學(xué)技術(shù);2000年03期
相關(guān)會議論文 前5條
1 葉一東;李建民;顏宏;王鋒;雒仲祥;;光束衍射傳輸?shù)臄?shù)值仿真方法[A];第十七屆全國激光學(xué)術(shù)會議論文集[C];2005年
2 李陽月;蒲繼雄;;渦旋光束通過角向分布狹縫的干涉特性[A];中國光學(xué)學(xué)會2010年光學(xué)大會論文集[C];2010年
3 馮博;甘雪濤;趙建林;;階梯相位型渦旋光束傳輸特性研究[A];2010年西部光子學(xué)學(xué)術(shù)會議摘要集[C];2010年
4 錢勇;張宇;魏榮;王育竹;;單角錐準(zhǔn)直空心光勢阱的理論與實驗研究[A];大珩先生九十華誕文集暨中國光學(xué)學(xué)會2004年學(xué)術(shù)大會論文集[C];2004年
5 陸璇輝;陳和;趙承良;;渦旋光束和光學(xué)渦旋的研究[A];2007年先進(jìn)激光技術(shù)發(fā)展與應(yīng)用研討會論文集[C];2007年
相關(guān)重要報紙文章 前1條
1 曲雙平;神奇的光束傳輸技術(shù)[N];電腦報;2003年
相關(guān)博士學(xué)位論文 前10條
1 盧芳;陣列光束在湍流大氣中的傳輸及目標(biāo)散射回波特性[D];西安電子科技大學(xué);2016年
2 高麒麟;多模光纖中基于受激布里淵散射的光束凈化效應(yīng)研究[D];哈爾濱工業(yè)大學(xué);2016年
3 馮世鵬;激光在振動環(huán)境中的傳輸及指向控制研究[D];國防科學(xué)技術(shù)大學(xué);2014年
4 徐騰;激光慣性約束核聚變中直接驅(qū)動方式光束排布優(yōu)化研究[D];中國科學(xué)技術(shù)大學(xué);2014年
5 董淵;雙半高斯空心光束的形成、傳輸及控制技術(shù)研究[D];長春理工大學(xué);2010年
6 董一鳴;部分相干柱偏振矢量光束的表征、傳輸及應(yīng)用基礎(chǔ)研究[D];蘇州大學(xué);2014年
7 段_";有限光束在平面微結(jié)構(gòu)中的共振傳輸[D];中國科學(xué)院研究生院(西安光學(xué)精密機(jī)械研究所);2008年
8 姚e,
本文編號:2308594
本文鏈接:http://www.lk138.cn/kejilunwen/xinxigongchenglunwen/2308594.html