考慮土體不均勻性的巖土工程可靠度分析
[Abstract]:The geotechnical engineering of water and water resources has many uncertainties, such as the uncertainty of the parameters of the rock and soil body, the cognitive uncertainty and the model uncertainty caused by the measurement error, etc., in which the inherent non-uniformity of the rock and soil body has an important influence on the reliability analysis of the geotechnical engineering. due to the different geological, environmental and chemical effects of the soil body, the soil property parameters such as shear strength parameters of different depths tend to exhibit a tendency to change with depth, however, At present, the reliability analysis of most geotechnical engineering has taken into account the influence of the spatial variability of the soil parameters, but the influence of the soil property parameters with the depth change trend on the reliability of the soil structure is still lacking. Such as the influence of the mean or standard deviation of the shear strength parameter on the reliability of the rock and soil structure with the depth change, and the like. On the other hand, there is another form of heterogeneity of the rock and soil in the practical geotechnical engineering, that is, the formation variability. It shows that the internesting of different types of rock and soil materials or one type of soil material is irregular in another relatively homogeneous soil material. Such formation variability has been given sufficient attention in other fields, such as oil exploration, groundwater and pollutant migration. Although the geotechnical engineering field has long been aware of the effect of formation variability on the safety of the geotechnical engineering, the study indicates that the formation variability has an important effect on the distribution and direction of the landslide. However, the effect of formation variability on the reliability of geotechnical engineering is not shown in the study. In addition, the formation variability simulation method based on large-scale analysis is adopted in the migration of oil and groundwater pollutants. For most rock-and-soil structures, this method of formation variability is not necessarily applicable. Therefore, it is urgent to develop a method for simulating the formation variability applicable to the scale of the rock and soil structure, and on this basis, the effect of formation variability on the reliability of the rock and soil structure is discussed. In addition, the existing slope reliability analysis considering the spatial variability is mostly concerned with the calculation of the failure probability of the slope, the influence of the spatial variability on the failure mode of the slope is not deep enough, and the most dangerous sliding surface of the slope directly determines the scale and the size of the slope failure, And directly influence the slope failure consequence assessment. It is necessary to study the effect of the spatial variability of soil parameters on the distribution of the most dangerous sliding surface of the slope. In view of the above three key scientific problems, this paper focuses on the spatial variability of the soil shear strength parameter with depth and the simulation method of the formation variability, and on the basis of this, the influence of the non-uniformity of the two soils on the reliability of the soil structure is discussed. The effect of the spatial variability of the soil parameters on the most dangerous sliding surface of the slope is also studied. The main research contents include the method of modeling the spatial variability of the shear strength of the soil in the non-stationary random field, the influence of the soil spatial variability on the most dangerous sliding surface of the slope, and the reliability analysis method of the soil-soil structure considering the spatial variability of the soil parameters, The method of slope stability analysis considering the formation variability is given based on the estimation of the probability matrix of the horizontal transfer probability of the coupled Markov chain based on the drilling data. The main work and conclusions are as follows: (1) The research background and significance of the reliability analysis of the geotechnical engineering considering the non-uniformity of the soil body are described, the modeling method of the uncertainty of the geotechnical parameters is reviewed, and the existing problems and the direction to be improved are pointed out. The reliability analysis method and the research object of the geotechnical engineering considering the spatial variability of the parameters are summarized. The present situation of the formation variability in the field of geotechnical engineering is briefly introduced, and the key problem of the reliability of the geotechnical engineering considering the formation variability is analyzed, and the application of the Markov chain model in the field of engineering is introduced. (2) In order to study the effect of the variation trend of shear strength on the reliability of the rock and soil structure, the non-stationary random field model and its simulation method to characterize the spatial variability of the shear strength parameter are put forward. The trend of the non-drained shear strength and the effective internal friction angle with the depth of the soil is verified from the empirical formula and the measured data, and the non-stationary random field model of the non-drained shear strength parameter and the effective internal friction angle is established by the difference between the non-smooth shear strength parameters and the effective internal friction angle. In order to use the total stress and effective stress method to consider the spatial variability of the parameters with the depth trend, a certain theoretical foundation is laid. (3) The method for determining the most dangerous sliding surface of the side slope considering the spatial variability of the shear strength of the soil is proposed in view of the problem of the distribution of the most dangerous sliding surface of the side slope considering the spatial variability of the rock and soil parameters. The influence of the fluctuation range and coefficient of variation of the shear strength parameter of soil on the distribution of the most dangerous sliding surface of the slope is discussed, and the influence of the spatial variability of the shear strength parameter on the position, scale and distribution of the most dangerous sliding surface of the slope is revealed. An effective analytical tool is provided to determine the slope failure mode of the spatial variability of soil parameters. (4) An infinite long slope stability probability analysis method considering the variation of the mean value of the shear strength of the soil body with the depth is put forward, and a non-stationary random field model for characterizing the spatial variability of the shear strength parameter of the soil body is established, The change law of slope failure probability and the most dangerous sliding surface in consideration of the spatial variability of the shear strength of the soil is discussed, and the effectiveness of the proposed method is verified by taking an infinite long non-drainage cohesive soil slope and a friction/ cohesive soil slope as an example. The correctness of the results of the numerical analysis is verified by the actual landslide case in the real world. The research results provide an effective basis for the occurrence of shallow damage in most landslides in the actual project. (5) The method of foundation stability probability analysis considering the mean and standard deviation of the non-drained shear strength of the soil and the variation of the standard deviation with the depth is put forward, and the influence of the spatial variability of the non-drainage shear strength of the soil on the ultimate bearing capacity of the foundation is clarified. The effect of undrained shear strength parameters on the ultimate bearing capacity of the foundation is systematically compared. It is concluded that ignoring the variation trend of the non-drained shear strength parameter with the depth will significantly undervalue the reliability of the foundation under the undrained condition, and provides a direction for improving the reliability design of the foundation. (6) In order to simulate the formation variability in the rock and soil structure, a new method for estimating the horizontal transfer probability matrix of the coupled Markov chain is proposed, and the fine simulation of the formation variability of the rock and soil structure is realized. The first-order Markov property of the state transition of the soil is checked, and the validity of the proposed method is verified. On the basis of this, the general rule of the transition probability matrix and the vertical direction transfer probability matrix of the state transition Markov chain of the soil is studied, and the effective estimation of the transfer probability matrix in the horizontal direction of the state of the soil is realized. It lays a theoretical foundation for the simulation of formation variability in geotechnical engineering. (7) The method of slope stability safety factor analysis based on borehole data and coupled Markov chain is put forward, and the method of slope stability probability analysis is established based on the finite element stress method. The influence of different drilling arrangement schemes on the uncertainty of the safety factor of the slope stability is analyzed, and the appropriate distance between the most peripheral drilling hole and the slope top (or toe) of the slope is proposed, the influence of the drilling position, the number of the number on the stability safety factor of the slope and the uncertainty of the most dangerous sliding surface is clarified. It provides the theoretical guidance for the design of geological exploration.
【學位授予單位】:武漢大學
【學位級別】:博士
【學位授予年份】:2015
【分類號】:TV223
【相似文獻】
相關期刊論文 前10條
1 曾志崧;互聯(lián)網上的巖土工程資源[J];工程勘察;2000年04期
2 龔曉南;21世紀巖土工程發(fā)展展望[J];巖土工程學報;2000年02期
3 張遵葆;面向二十一世紀的巖土工程[J];巖土工程界;2000年01期
4 林鳳桐;巖土工程2000年展望[J];巖土工程界;2000年01期
5 黃潤秋,鄧輝,向喜瓊;巖土工程信息技術應用(上)[J];巖土工程界;2001年06期
6 林宗元;再論巖土工程[J];巖土工程界;2002年06期
7 ;《巖土工程叢書》年內出版[J];巖土工程界;2003年04期
8 李廣信;關于巖土工程考試的若干問題[J];巖土工程界;2003年05期
9 高大釗 ,莫群歡 ,顧寶和;巖土工程勘察規(guī)范與巖土工程行業(yè)新模式[J];巖土工程界;2003年08期
10 錢七虎;巖土工程領域若干工程途徑的辨證對比思考[J];巖土工程界;2003年10期
相關會議論文 前10條
1 張在明;;巖土工程現(xiàn)狀與發(fā)展的初步探討[A];全國巖土與工程學術大會論文集(上冊)[C];2003年
2 王鐘琦;;巖土工程價值觀[A];全國巖土與工程學術大會論文集(上冊)[C];2003年
3 黃理興;;現(xiàn)代巖土工程與研究熱點[A];加入WTO和中國科技與可持續(xù)發(fā)展——挑戰(zhàn)與機遇、責任和對策(上冊)[C];2002年
4 馬建林;;德國巖土工程現(xiàn)狀和發(fā)展趨勢[A];第八次全國巖石力學與工程學術大會論文集[C];2004年
5 謝豪輝;;淺論巖土工程項目勘察方法及強化措施管理[A];建材建設工程優(yōu)秀論文集[C];2011年
6 錢七虎;;巖土工程的第四次浪潮[A];錢七虎院士論文選集[C];2007年
7 王鳳生;;巖土工程在國土資源勘察與開發(fā)過程中的地位和作用[A];全國巖土與工程學術大會論文集(下冊)[C];2003年
8 羅國煜;王培清;;略論巖土工程的國內外發(fā)展趨勢[A];第一屆華東巖土工程學術大會論文集[C];1990年
9 ;巖土工程的特點與未來的創(chuàng)新發(fā)展——《巖土工程界》期刊采訪談[A];盛世歲月——祝賀孫鈞院士八秩華誕論文選集[C];2006年
10 羅國煜;王培清;;略論巖土工程的國內外發(fā)展趨勢[A];巖土力學數(shù)值方法的工程應用——第二屆全國巖石力學數(shù)值計算與模型實驗學術研討會論文集[C];1990年
相關重要報紙文章 前10條
1 徐敏;巖土工程也能有“創(chuàng)意”[N];建筑時報;2007年
2 記者 樊曉麗;北屯新區(qū)巖土工程外業(yè)勘察工作結束[N];阿勒泰日報;2009年
3 李玉明;中日巖土工程研討會召開[N];中華建筑報;2005年
4 顧今;探討全球巖土工程未來發(fā)展方向[N];建筑時報;2008年
5 夏云冰;云南“第一高樓”巖土工程開工[N];地質勘查導報;2009年
6 周獻恩;到巖土工程領域“淘金”去[N];中國交通報;2004年
7 記者 王巧然 通訊員 劉敦海 信明亮;走向國際:從世界火爐出發(fā)[N];中國石油報;2006年
8 宋榮俊;在轉型升級中揚帆[N];中煤地質報;2010年
9 記者 李峰;土力學及巖土工程學術會在蘭舉行[N];甘肅日報;2011年
10 張平 傅秋瑛;青出于藍 心靜如水[N];科技日報;2004年
相關博士學位論文 前9條
1 祁小輝;考慮土體不均勻性的巖土工程可靠度分析[D];武漢大學;2015年
2 莫時雄;典型金屬礦山巖土工程環(huán)境評價體系與預警系統(tǒng)研究[D];中南大學;2008年
3 常斌;基于數(shù)值仿真試驗的巖土工程智能化方法及應用研究[D];西安理工大學;2005年
4 陳斌;巖土工程隨機反演分析及工程應用[D];河海大學;2001年
5 靳曉光;山區(qū)公路建設中的巖土工程監(jiān)測與信息化控制[D];成都理工學院;2000年
6 唐烈先;RFPA離心機法在巖土工程破壞分析中的應用研究[D];東北大學;2008年
7 毛堅強;接觸問題的一種有限元計算方法及其在巖土工程中的應用[D];西南交通大學;2002年
8 雷曉燕;三維彈塑性,,彈粘塑性有限元與邊界元耦合數(shù)值方法及其在巖土工程中的應用[D];清華大學;1989年
9 陳陸望;物理模型試驗技術研究及其在巖土工程中的應用[D];中國科學院研究生院(武漢巖土力學研究所);2006年
相關碩士學位論文 前10條
1 陸特;[D];天津大學;2013年
2 廖艷程;巖土工程中的小波(包)分析理論及其應用[D];長沙理工大學;2010年
3 鄭艷平;巖土工程監(jiān)理技術方法探討[D];河北工程大學;2012年
4 白林慶;巖土工程專項監(jiān)理技術方法研究[D];山東大學;2008年
5 宋祥紅;巖土工程網絡教學資源庫的開發(fā)[D];長安大學;2005年
6 孫志東;城市三維巖土工程信息系統(tǒng)的設計與實現(xiàn)[D];北京大學;2008年
7 劉立兵;鄭州市巖土工程特征及對策研究[D];中國海洋大學;2003年
8 楊艷;多年凍土地區(qū)巖土工程數(shù)據管理研究[D];西安理工大學;2009年
9 和法國;巖土工程加固新材料試驗研究[D];蘭州大學;2006年
10 丁為;華能大廈巖土工程項目技術風險評價及控制[D];吉林大學;2013年
本文編號:2493812
本文鏈接:http://www.lk138.cn/kejilunwen/shuiwenshuili/2493812.html