基于焊縫影響的地下鏟運(yùn)機(jī)工作機(jī)構(gòu)強(qiáng)度和動(dòng)力學(xué)分析
本文選題:地下鏟運(yùn)機(jī) + 正轉(zhuǎn)六連桿工作機(jī)構(gòu); 參考:《山東理工大學(xué)》2017年碩士論文
【摘要】:地下鏟運(yùn)機(jī)是地下礦山無(wú)軌采掘作業(yè)必備的主體設(shè)備之一,依靠工作機(jī)構(gòu)的運(yùn)動(dòng)來(lái)完成物料的裝、運(yùn)、卸。目前,工作機(jī)構(gòu)均采用了焊接結(jié)構(gòu),焊縫的結(jié)構(gòu)形式、焊接質(zhì)量都直接影響著工作機(jī)構(gòu)的強(qiáng)度。本文以2m3地下鏟運(yùn)機(jī)的工作機(jī)構(gòu)為例,基于不同焊接形式、質(zhì)量,對(duì)正轉(zhuǎn)六連桿機(jī)構(gòu)進(jìn)行強(qiáng)度和動(dòng)力學(xué)研究分析,以獲得正轉(zhuǎn)六桿機(jī)構(gòu)工作狀態(tài)下的強(qiáng)度分布規(guī)律及動(dòng)力學(xué)特性。論文的主要工作如下:(1)研究了正轉(zhuǎn)六連桿工作機(jī)構(gòu)在插入和鏟取工況下的受力狀況,獲得了兩種典型工況下的機(jī)構(gòu)強(qiáng)度理論計(jì)算方法;對(duì)動(dòng)臂焊接結(jié)構(gòu)的強(qiáng)度進(jìn)行理論分析,得出焊縫的幾何形狀對(duì)焊接結(jié)構(gòu)的強(qiáng)度存在極大影響,為進(jìn)行強(qiáng)度有限元分析選擇更加合理的焊接結(jié)構(gòu)奠定了基礎(chǔ)。(2)通過(guò)SolidWorks軟件的參數(shù)化零件建模和虛擬裝配技術(shù),建立了2m3地下鏟運(yùn)機(jī)工作機(jī)構(gòu)的虛擬樣機(jī)。將其導(dǎo)入動(dòng)力學(xué)仿真軟件ADAMS中,選取兩個(gè)典型的載荷分布——正載和偏載,對(duì)正轉(zhuǎn)六連桿工作機(jī)構(gòu)進(jìn)行多剛體動(dòng)力學(xué)仿真,獲得了動(dòng)臂上的三個(gè)主要鉸接點(diǎn)的運(yùn)動(dòng)特性并得出最大受力的狀態(tài)處在鏟取位置,為更加合理地進(jìn)行強(qiáng)度分析提供了依據(jù)。(3)在ANSYS Workbench中建立處于鏟取工況下的工作機(jī)構(gòu)有限元模型,添加正載和偏載載荷并進(jìn)行靜力學(xué)分析,找出了工作機(jī)構(gòu)各構(gòu)件的應(yīng)力集中處和最大應(yīng)力值,分析危險(xiǎn)截面和高應(yīng)力區(qū)的分布情況。由仿真結(jié)果可知,在兩種不同的載荷情況下,動(dòng)臂和搖臂的總體應(yīng)力變化不大,且最大應(yīng)力值均小于選擇材料的許用應(yīng)力。在偏載載荷下,由于正轉(zhuǎn)六連桿機(jī)構(gòu)的特性,連桿所受拉應(yīng)力比正載載荷下明顯增大了一倍。同時(shí),鏟斗斗刃與動(dòng)臂側(cè)板與橫梁之間的焊接焊縫出現(xiàn)了應(yīng)力集中情況,為進(jìn)行焊接結(jié)構(gòu)的強(qiáng)度仿真提供了依據(jù)。(4)對(duì)具有不同焊接形式的側(cè)板與橫梁之間的焊縫的動(dòng)臂模型進(jìn)行有限元仿真與研究,得出各因素對(duì)焊縫強(qiáng)度的一般影響規(guī)律,提出了更加合理的抗疲勞性能的焊縫結(jié)構(gòu)形式。給出側(cè)板坡口角度為40°、角焊縫加強(qiáng)高尺寸不超過(guò)8mm、所形成的焊縫表面為內(nèi)凹形的焊接結(jié)構(gòu)更能滿足強(qiáng)度要求。
[Abstract]:Underground scraper is one of the main equipment necessary for underground mine trackless mining. It depends on the movement of working mechanism to complete the loading, transporting and unloading of materials. At present, the welding structure is adopted in the working mechanism, and the structure form and welding quality of the weld directly affect the strength of the working mechanism. In this paper, the working mechanism of 2m3 underground scraper is taken as an example. Based on the different welding forms and quality, the strength and dynamics of the forward rotating six-bar mechanism are studied and analyzed. In order to obtain the strength distribution and dynamic characteristics of the positive rotating six-bar mechanism. The main work of this paper is as follows: (1) the force condition of the forward rotating six-bar working mechanism under the conditions of insertion and shovel is studied, and the theoretical calculation method of the mechanism strength under two typical working conditions is obtained, and the strength of the welded structure of the arm is analyzed theoretically. It is concluded that the geometry of weld seam has a great influence on the strength of welded structure, which lays a foundation for selecting a more reasonable welding structure by means of finite element analysis of strength. (2) Parametric part modeling and virtual assembly technology based on SolidWorks software. The virtual prototype of working mechanism of 2m3 underground scraper is established. It is introduced into the dynamic simulation software ADAMS, and two typical load distributions, positive load and partial load, are selected to simulate the multi-rigid-body dynamics of the forward rotating six-bar mechanism. The motion characteristics of the three main hinge points on the arm are obtained and the state of the maximum force is in the shovel position. In order to make strength analysis more reasonable, the finite element model of working mechanism under the condition of shovel is established in ANSYS Workbench. The positive load and partial load are added and statics analysis is carried out. The stress concentration and the maximum stress value of each component of the working mechanism are found, and the distribution of the dangerous section and the high stress region is analyzed. The simulation results show that under two different loads, the total stress of the arm and rocker arm has little change, and the maximum stress value is smaller than the allowable stress of the selected material. Due to the characteristics of the positive rotating six-bar linkage, the tensile stress of the connecting rod is increased by twice as much as that under the positive load load. At the same time, the stress concentration appears in the welding weld between the bucket blade and the side plate of the moving arm and the beam. For the strength simulation of welding structure, the finite element simulation and research of the welding arm model between side plate and beam with different welding forms are carried out, and the general influence law of each factor on weld strength is obtained. A more reasonable weld structure with fatigue resistance is proposed. The groove angle of the side plate is 40 擄, the high size of the fillet weld is not more than 8 mm, and the welding structure with the inner concave surface is more suitable for the strength requirement.
【學(xué)位授予單位】:山東理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TD421
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王振華;蔣世應(yīng);沈濤;付秋林;;某焊接接頭的疲勞壽命預(yù)測(cè)[J];科技風(fēng);2017年01期
2 朱英翔;陳燕;余啟志;;基于SolidWorks的焊件參數(shù)化自動(dòng)建模研究[J];微型機(jī)與應(yīng)用;2016年22期
3 阮勤超;董萬(wàn)鵬;;基于SolidWorks斜楔機(jī)構(gòu)的參數(shù)化建模[J];上海工程技術(shù)大學(xué)學(xué)報(bào);2016年02期
4 張彥華;劉娟;杜子瑞;陶博浩;;焊接結(jié)構(gòu)的疲勞評(píng)定方法[J];航空制造技術(shù);2016年11期
5 游敏;;井下采礦技術(shù)和井下采礦的發(fā)展趨勢(shì)[J];世界有色金屬;2016年06期
6 王亮;;梁式跨越直管道強(qiáng)度計(jì)算理論分析[J];齊魯工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2016年01期
7 袁瑜;;阿特拉斯·科普柯地下鏟運(yùn)設(shè)備的風(fēng)雨歷程[J];礦業(yè)裝備;2016年01期
8 魏康;何柏林;;基于ABAQUS的轉(zhuǎn)向架十字焊接接頭應(yīng)力集中系數(shù)分析[J];兵器材料科學(xué)與工程;2016年01期
9 苑昆;柳言序;崔金;任樂(lè)超;;基于虛擬樣機(jī)的6m~3地下鏟運(yùn)機(jī)工況研究[J];中國(guó)礦業(yè);2015年11期
10 楊軍;;基于Solidworks的零件建模的若干方法[J];科技視界;2015年31期
相關(guān)重要報(bào)紙文章 前1條
1 張志霞;;國(guó)內(nèi)自主設(shè)計(jì)的首臺(tái)地下遙控鏟運(yùn)機(jī)面世[N];中國(guó)冶金報(bào);2012年
相關(guān)博士學(xué)位論文 前1條
1 楊忠炯;地下鏟運(yùn)機(jī)多體系統(tǒng)虛擬樣機(jī)建模及系統(tǒng)動(dòng)態(tài)特性仿真研究[D];中南大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 王秀景;5T壓縮式廚余垃圾車工作機(jī)構(gòu)優(yōu)化設(shè)計(jì)及分析[D];山東理工大學(xué);2015年
2 朱朝霞;裝載機(jī)工作裝置多體動(dòng)力學(xué)分析[D];南京航空航天大學(xué);2015年
3 李俊;基于熱點(diǎn)應(yīng)力法的挖掘機(jī)動(dòng)臂焊縫的疲勞壽命分析[D];電子科技大學(xué);2015年
4 劉寅;液壓挖掘機(jī)工作裝置的有限元分析與參數(shù)優(yōu)化[D];蘭州交通大學(xué);2014年
5 朱昊;Wa700型裝載機(jī)工作裝置的動(dòng)力學(xué)仿真及靜力學(xué)有限元分析[D];內(nèi)蒙古科技大學(xué);2014年
6 李震;輕量化橋式起重機(jī)主梁焊縫疲勞壽命研究[D];大連理工大學(xué);2014年
7 蘇琦;液壓挖掘機(jī)動(dòng)臂強(qiáng)度分析與疲勞壽命預(yù)測(cè)[D];中南大學(xué);2014年
8 王倩倩;JCCY-2型地下鏟運(yùn)機(jī)工作裝置的優(yōu)化[D];蘭州理工大學(xué);2012年
9 王振;裝載機(jī)工作裝置性能分析及其綜合優(yōu)化設(shè)計(jì)[D];吉林大學(xué);2011年
10 于海增;輪式裝載機(jī)工作裝置的動(dòng)力學(xué)仿真及疲勞耐久性分析[D];蘇州大學(xué);2011年
,本文編號(hào):1837335
本文鏈接:http://www.lk138.cn/kejilunwen/kuangye/1837335.html