導(dǎo)流器幾何參數(shù)對(duì)潛水泵性能的影響
發(fā)布時(shí)間:2018-01-04 14:45
本文關(guān)鍵詞:導(dǎo)流器幾何參數(shù)對(duì)潛水泵性能的影響 出處:《蘭州理工大學(xué)》2012年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 潛水泵 導(dǎo)流器 水力設(shè)計(jì) 數(shù)值模擬 內(nèi)部流場(chǎng)分析 面積比
【摘要】:潛水泵作為一種通用機(jī)械廣泛應(yīng)用于工農(nóng)業(yè)生產(chǎn)生活中,,但是目前市場(chǎng)上的潛水泵機(jī)組效率普遍不夠高,所以有必要研究開發(fā)性能更優(yōu)的潛水泵。設(shè)計(jì)中除改進(jìn)葉輪外還可以通過改變導(dǎo)流器幾何參數(shù)來生產(chǎn)出性能更加優(yōu)異的潛水泵,適應(yīng)市場(chǎng)需求。 本課題以潛水泵作為研究對(duì)象,通過對(duì)潛水泵全流場(chǎng)水力設(shè)計(jì)、過流部件三維造型并運(yùn)用CFD數(shù)值模擬技術(shù)對(duì)潛水泵導(dǎo)流器特性及提高泵性能展開研究,對(duì)其性能進(jìn)行了預(yù)測(cè)與分析,取得的研究成果如下: 第一,推導(dǎo)了導(dǎo)流器及葉輪的特性方程式,理論上分析出了導(dǎo)流器幾何參數(shù)葉片數(shù)Z、軸面進(jìn)口寬度b3及葉片進(jìn)口安放角α3對(duì)導(dǎo)流器特性曲線的影響,得到了潛水泵最佳工況點(diǎn)的理論求解方法; 第二,采用FLUENT軟件,選用kε模型,利用SIMPLE算法對(duì)潛水泵內(nèi)部三維不可壓縮湍流場(chǎng)在不同流量運(yùn)行工況下進(jìn)行了數(shù)值計(jì)算預(yù)估。通過對(duì)不同進(jìn)口幾何參數(shù)導(dǎo)流器方案的速度場(chǎng)、壓力場(chǎng)的分析研究,預(yù)測(cè)出了導(dǎo)流器的性能。 第三,通過對(duì)同一葉輪分別與不同進(jìn)口幾何參數(shù)導(dǎo)流器匹配的潛水泵進(jìn)行的數(shù)值計(jì)算得到了各潛水泵的性能曲線,并根據(jù)沿軸線方向不同Z截面總壓平均量變化曲線計(jì)算出了不同方案導(dǎo)流器的內(nèi)部能量損失,揭示了導(dǎo)流器葉片數(shù)Z、軸面進(jìn)口寬度b3及葉片進(jìn)口安放角α3對(duì)泵性能影響規(guī)律; 第四,通過對(duì)解析法計(jì)算所得的潛水泵最佳工況點(diǎn)與數(shù)值模擬試驗(yàn)所得的最佳工況點(diǎn)進(jìn)行的誤差分析,論證了潛水泵最佳工況點(diǎn)的理論計(jì)算方法和CFD數(shù)值模擬結(jié)果是吻合的,有實(shí)用價(jià)值的; 第五,利用潛水泵面積比系數(shù)的理論計(jì)算與實(shí)測(cè)方法,計(jì)算出同一葉輪與不同幾何參數(shù)導(dǎo)流器匹配時(shí)面積比系數(shù),并結(jié)合導(dǎo)流器幾何參數(shù)Z、b3、α3對(duì)泵性能影響規(guī)律得到了250QJ125型潛水泵的最佳面積比系數(shù)最佳取值范圍為0.84~0.86。并在保持葉輪不變情況下,根據(jù)研究出的結(jié)論設(shè)計(jì)出一種新的導(dǎo)流器(Ⅱ),通過分析得到潛水泵(Ⅱ)的單級(jí)揚(yáng)程及效率較原型泵(Ⅰ)分別提高了0.9m和1.96%,從而證明了本課題研究是有價(jià)值的; 借助CFD數(shù)值模擬技術(shù)研究潛水泵導(dǎo)流器的特性及泵性能,能夠清晰得掌握潛水泵內(nèi)部流動(dòng)規(guī)律,從而判斷設(shè)計(jì)參數(shù)是否合理;同時(shí)還可以縮短產(chǎn)品研發(fā)周期,降低成本,具有較大的科研和經(jīng)濟(jì)意義。
[Abstract]:Submersible pump as a kind of general machinery is widely used in industrial and agricultural production and life, but the efficiency of submersible pump units in the market is generally not high enough. So it is necessary to study and develop submersible pump with better performance. In addition to improving impeller, it is possible to produce submersible pump with better performance by changing the geometric parameters of the guide so as to meet the needs of the market. This topic takes submersible pump as the research object, through the hydraulic design of the whole flow field of the submersible pump, the three-dimensional modeling of the flow passing parts and the use of CFD numerical simulation technology to study the characteristics of the submersible pump guide and improve the pump performance. Its performance is predicted and analyzed, and the research results are as follows: Firstly, the characteristic equations of the guide and impeller are derived, and the influence of the geometric parameters of the guide on the characteristic curve of the guide is analyzed theoretically, such as the number of blades Z, the width of the axial inlet b _ 3 and the angle 偽 _ 3 of the inlet of the blade. The theoretical solution of the optimal operating point of the submersible pump is obtained. Secondly, we adopt FLUENT software and choose k 蔚 model. The 3-D incompressible turbulent field in submersible pump was calculated and predicted by SIMPLE algorithm under different flow operating conditions. The velocity field of different inlet geometric parameter diversion schemes was calculated and predicted. The performance of the guide is predicted by the analysis of the pressure field. Thirdly, the performance curves of each submersible pump are obtained by the numerical calculation of the same impeller matching with different inlet geometric parameters of the submersible pump. According to the variation curve of the total pressure of different Z section along the axis, the internal energy loss of the diversion device with different schemes is calculated, and the blade number Z of the diversion device is revealed. The influence of axial inlet width b3 and blade inlet angle 偽 3 on pump performance; 4th, the error analysis of the optimum operating point of submersible pump calculated by analytical method and the optimum working point obtained by numerical simulation test is carried out. It is proved that the theoretical calculation method of the optimum operating point of submersible pump is in agreement with the result of CFD numerical simulation and has practical value. In 5th, the area ratio coefficient of the same impeller matched with different geometric parameters was calculated by using the theoretical calculation and the actual measurement method of the area ratio coefficient of the submersible pump, and combined with the geometric parameter ZB3 of the diversion device. The optimum area ratio coefficient of the 250QJ125 submersible pump was obtained from the effect of 偽 3 on the pump performance in the range of 0.84V 0.86, and the impeller was kept unchanged. According to the conclusion of the study, a new type of diversion (鈪
本文編號(hào):1378836
本文鏈接:http://www.lk138.cn/kejilunwen/jixiegongcheng/1378836.html
最近更新
教材專著