中国韩国日本在线观看免费,A级尤物一区,日韩精品一二三区无码,欧美日韩少妇色

當(dāng)前位置:主頁 > 科技論文 > 電子信息論文 >

憶阻神經(jīng)網(wǎng)絡(luò)聯(lián)想學(xué)習(xí)電路設(shè)計與分析

發(fā)布時間:2018-10-05 13:23
【摘要】:現(xiàn)如今,人工神經(jīng)網(wǎng)絡(luò)一直是眾多研究者關(guān)注的重大課題,但其發(fā)展大多基于神經(jīng)信息演算的原理和法則,在馮諾依曼機上構(gòu)造具有生物神經(jīng)系統(tǒng)結(jié)構(gòu)特征與功能的神經(jīng)計算理論模型。但人工神經(jīng)網(wǎng)絡(luò)發(fā)展的最終目標(biāo)在于,在神經(jīng)細(xì)胞的水平上,研究并理解生物神經(jīng)系統(tǒng)的智能原理以及智能行為,從而以生物神經(jīng)系統(tǒng)的方式構(gòu)造具有智能行為的智能機器,這與馮諾依曼體系計算機具有本質(zhì)的區(qū)別,可定義為第五代智能計算機。在硬件水平上實現(xiàn)人工神經(jīng)網(wǎng)絡(luò),最重要的問題是解決神經(jīng)元電路與突觸電路集成度與連接度。隨著近年來在新型元器件的研究領(lǐng)域的發(fā)展,納米級元件的出現(xiàn)為此帶來了新的突破口。比傳統(tǒng)CMOS更小尺寸的納米級硅薄膜晶體管(Nc-Si TFT)的出現(xiàn)保證原有性能的基礎(chǔ)上提升了反應(yīng)速度,降低了功耗。突觸電路作為神經(jīng)元之間連接的重要部件,不僅擔(dān)負(fù)著神經(jīng)元間信息傳遞的功能,同時其自身應(yīng)具有很高的可塑造性來以實現(xiàn)神經(jīng)系統(tǒng)的記憶與學(xué)習(xí)。憶阻器的出現(xiàn)為此提供了基礎(chǔ),憶阻器是具有動態(tài)特性的電阻,阻值可依賴于激勵電壓來變化,同時具有低能耗、納米級、長久記憶等特性,使其具有類似于生物神經(jīng)突觸連接強度與可塑造的特性,可用作為突觸電路的基礎(chǔ)部件存儲突觸連接強度。本文首先介紹了課題研究的背景,對憶阻器的發(fā)展以及應(yīng)用進行了詳細(xì)介紹,并對HP型憶阻器進行了SPICE環(huán)境下的仿真與性能分析;然后對人工神經(jīng)網(wǎng)絡(luò)的發(fā)展以及對人工神經(jīng)網(wǎng)絡(luò)發(fā)展有重要影響的聯(lián)想學(xué)習(xí)算法進行了介紹;最后詳細(xì)給出了納米級TFT SPICE模型的過程,并進行了電氣環(huán)境下的性能仿真。在此基礎(chǔ)上為實現(xiàn)憶阻器突觸電路的學(xué)習(xí)功能,建立了“整合—激發(fā)”型神經(jīng)元SPICE仿真電路,分析了電路中每個部件的工作特性,完善了原始Mead神經(jīng)元電路結(jié)構(gòu),并對電路的脈沖信號產(chǎn)生過程進行了SPICE仿真。同時結(jié)合TFT及憶阻器的特性提出了新型可實現(xiàn)HEBB學(xué)習(xí)的神經(jīng)元突觸電路結(jié)構(gòu),使突觸電路更符合真實生物神經(jīng)突觸特征,同時提高了突觸電路的控制靈活性與可擴展性。在應(yīng)用此設(shè)計的基礎(chǔ)上,實現(xiàn)了兩個神經(jīng)元所構(gòu)成神經(jīng)網(wǎng)絡(luò)之間的基于單脈沖HEBB學(xué)習(xí)與平均激發(fā)率的學(xué)習(xí)規(guī)則。并進一步基于多個神經(jīng)元的神經(jīng)網(wǎng)絡(luò)完成了Pavlov實驗,證明了此神經(jīng)系統(tǒng)結(jié)構(gòu)設(shè)計在聯(lián)想學(xué)習(xí)方面的可用性。同時,為證實此電路可提供與傳統(tǒng)邏輯門電路相同的比較功能,進行了自學(xué)習(xí)基礎(chǔ)上輸入信號重合檢測功能的仿真實驗,實現(xiàn)傳統(tǒng)電路基本功能是神經(jīng)計算型智能計算機發(fā)展的重要基礎(chǔ)。
[Abstract]:Nowadays, artificial neural network (Ann) has always been a major concern of many researchers, but its development is mostly based on the principles and rules of neural information calculus. A neural computational model with the structural characteristics and functions of the biological nervous system was constructed on the von Neumann computer. But the ultimate goal of the development of artificial neural networks is to study and understand the intelligent principles and behaviors of the biological nervous system at the nerve cell level, so as to construct intelligent machines with intelligent behavior in the way of the biological nervous system. This is essentially different from the Von Neumann system computer, which can be defined as the fifth generation intelligent computer. The most important problem in the implementation of artificial neural networks at the hardware level is to solve the integration and connectivity of neuronal circuits and synaptic circuits. With the development of new components in recent years, the appearance of nanometer components has brought a new breakthrough. The appearance of nanocrystalline silicon thin film transistor (Nc-Si TFT) which is smaller than the traditional CMOS can improve the reaction speed and reduce the power consumption. As an important part of neuron connection, synaptic circuit not only bears the function of transmission of information between neurons, but also has the ability to be molded to realize the memory and learning of the nervous system. The appearance of the resistor provides the basis for this. The resistor is a resistor with dynamic characteristics, the resistance value can depend on the excitation voltage to change, at the same time, it has the characteristics of low energy consumption, nanometer level, long memory, etc. It can be used as the basic part of the synaptic circuit to store the synaptic connection strength. In this paper, the background of the research is introduced, the development and application of the resistor are introduced in detail, and the simulation and performance analysis of the HP type resistor under the SPICE environment is carried out. Then, the development of artificial neural network and the associative learning algorithm which has important influence on the development of artificial neural network are introduced. Finally, the process of nano-scale TFT SPICE model is given in detail, and the performance simulation in electrical environment is carried out. On this basis, in order to realize the learning function of the memory device synaptic circuit, a "integration-excitation" type neuron SPICE simulation circuit is established. The working characteristics of each component in the circuit are analyzed, and the original Mead neuron circuit structure is improved. The pulse signal generation process of the circuit is simulated by SPICE. At the same time, combining the characteristics of TFT and amnesia, a new type of synaptic circuit structure for HEBB learning is proposed, which makes the synaptic circuit more consistent with the real biological synaptic characteristics, and improves the control flexibility and extensibility of the synaptic circuit. On the basis of this design, the learning rules based on monopulse HEBB learning and average excitation rate between two neural networks are realized. Furthermore, the Pavlov experiment based on neural network with multiple neurons is carried out, which proves the usability of the neural structure design in associative learning. At the same time, in order to prove that the circuit can provide the same function as the traditional logic gate circuit, the simulation experiment is carried out to detect the coincidence of input signal on the basis of self-learning. Realizing the basic functions of traditional circuits is an important basis for the development of neural computing intelligent computer.
【學(xué)位授予單位】:重慶大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TN702;TP183

【相似文獻】

相關(guān)期刊論文 前10條

1 云中客;新的神經(jīng)網(wǎng)絡(luò)來自于仿生學(xué)[J];物理;2001年10期

2 唐春明,高協(xié)平;進化神經(jīng)網(wǎng)絡(luò)的研究進展[J];系統(tǒng)工程與電子技術(shù);2001年10期

3 李智;一種基于神經(jīng)網(wǎng)絡(luò)的煤炭調(diào)運優(yōu)化方法[J];長沙鐵道學(xué)院學(xué)報;2003年02期

4 程科,王士同,楊靜宇;新型模糊形態(tài)神經(jīng)網(wǎng)絡(luò)及其應(yīng)用研究[J];計算機工程與應(yīng)用;2004年21期

5 王凡,孟立凡;關(guān)于使用神經(jīng)網(wǎng)絡(luò)推定操作者疲勞的研究[J];人類工效學(xué);2004年03期

6 周麗暉;從統(tǒng)計角度看神經(jīng)網(wǎng)絡(luò)[J];統(tǒng)計教育;2005年06期

7 趙奇 ,劉開第 ,龐彥軍;灰色補償神經(jīng)網(wǎng)絡(luò)及其應(yīng)用研究[J];微計算機信息;2005年14期

8 袁婷;;神經(jīng)網(wǎng)絡(luò)在股票市場預(yù)測中的應(yīng)用[J];軟件導(dǎo)刊;2006年05期

9 尚晉;楊有;;從神經(jīng)網(wǎng)絡(luò)的過去談科學(xué)發(fā)展觀[J];重慶三峽學(xué)院學(xué)報;2006年03期

10 楊鐘瑾;;神經(jīng)網(wǎng)絡(luò)的過去、現(xiàn)在和將來[J];青年探索;2006年04期

相關(guān)會議論文 前10條

1 徐春玉;;基于泛集的神經(jīng)網(wǎng)絡(luò)的混沌性[A];1996中國控制與決策學(xué)術(shù)年會論文集[C];1996年

2 周樹德;王巖;孫增圻;孫富春;;量子神經(jīng)網(wǎng)絡(luò)[A];2003年中國智能自動化會議論文集(上冊)[C];2003年

3 羅山;張琳;范文新;;基于神經(jīng)網(wǎng)絡(luò)和簡單規(guī)劃的識別融合算法[A];2009系統(tǒng)仿真技術(shù)及其應(yīng)用學(xué)術(shù)會議論文集[C];2009年

4 郭愛克;馬盡文;丁康;;序言(二)[A];1999年中國神經(jīng)網(wǎng)絡(luò)與信號處理學(xué)術(shù)會議論文集[C];1999年

5 鐘義信;;知識論:神經(jīng)網(wǎng)絡(luò)的新機遇——紀(jì)念中國神經(jīng)網(wǎng)絡(luò)10周年[A];1999年中國神經(jīng)網(wǎng)絡(luò)與信號處理學(xué)術(shù)會議論文集[C];1999年

6 許進;保錚;;神經(jīng)網(wǎng)絡(luò)與圖論[A];1999年中國神經(jīng)網(wǎng)絡(luò)與信號處理學(xué)術(shù)會議論文集[C];1999年

7 金龍;朱詩武;趙成志;陳寧;;數(shù)值預(yù)報產(chǎn)品的神經(jīng)網(wǎng)絡(luò)釋用預(yù)報應(yīng)用[A];1999年中國神經(jīng)網(wǎng)絡(luò)與信號處理學(xué)術(shù)會議論文集[C];1999年

8 田金亭;;神經(jīng)網(wǎng)絡(luò)在中學(xué)生創(chuàng)造力評估中的應(yīng)用[A];第十二屆全國心理學(xué)學(xué)術(shù)大會論文摘要集[C];2009年

9 唐墨;王科俊;;自發(fā)展神經(jīng)網(wǎng)絡(luò)的混沌特性研究[A];2009年中國智能自動化會議論文集(第七分冊)[南京理工大學(xué)學(xué)報(增刊)][C];2009年

10 張廣遠;萬強;曹海源;田方濤;;基于遺傳算法優(yōu)化神經(jīng)網(wǎng)絡(luò)的故障診斷方法研究[A];第十二屆全國設(shè)備故障診斷學(xué)術(shù)會議論文集[C];2010年

相關(guān)重要報紙文章 前10條

1 美國明尼蘇達大學(xué)社會學(xué)博士 密西西比州立大學(xué)國家戰(zhàn)略規(guī)劃與分析研究中心資深助理研究員 陳心想;維護好創(chuàng)新的“神經(jīng)網(wǎng)絡(luò)硬件”[N];中國教師報;2014年

2 盧業(yè)忠;腦控電腦 驚世駭俗[N];計算機世界;2001年

3 葛一鳴 路邊文;人工神經(jīng)網(wǎng)絡(luò)將大顯身手[N];中國紡織報;2003年

4 中國科技大學(xué)計算機系 邢方亮;神經(jīng)網(wǎng)絡(luò)挑戰(zhàn)人類大腦[N];計算機世界;2003年

5 記者 孫剛;“神經(jīng)網(wǎng)絡(luò)”:打開復(fù)雜工藝“黑箱”[N];解放日報;2007年

6 本報記者 劉霞;美用DNA制造出首個人造神經(jīng)網(wǎng)絡(luò)[N];科技日報;2011年

7 健康時報特約記者  張獻懷;干細(xì)胞移植:修復(fù)受損的神經(jīng)網(wǎng)絡(luò)[N];健康時報;2006年

8 劉力;我半導(dǎo)體神經(jīng)網(wǎng)絡(luò)技術(shù)及應(yīng)用研究達國際先進水平[N];中國電子報;2001年

9 ;神經(jīng)網(wǎng)絡(luò)和模糊邏輯[N];世界金屬導(dǎo)報;2002年

10 鄒麗梅 陳耀群;江蘇科大神經(jīng)網(wǎng)絡(luò)應(yīng)用研究通過鑒定[N];中國船舶報;2006年

相關(guān)博士學(xué)位論文 前10條

1 楊旭華;神經(jīng)網(wǎng)絡(luò)及其在控制中的應(yīng)用研究[D];浙江大學(xué);2004年

2 李素芳;基于神經(jīng)網(wǎng)絡(luò)的無線通信算法研究[D];山東大學(xué);2015年

3 石艷超;憶阻神經(jīng)網(wǎng)絡(luò)的混沌性及幾類時滯神經(jīng)網(wǎng)絡(luò)的同步研究[D];電子科技大學(xué);2014年

4 王新迎;基于隨機映射神經(jīng)網(wǎng)絡(luò)的多元時間序列預(yù)測方法研究[D];大連理工大學(xué);2015年

5 付愛民;極速學(xué)習(xí)機的訓(xùn)練殘差、穩(wěn)定性及泛化能力研究[D];中國農(nóng)業(yè)大學(xué);2015年

6 李輝;基于粒計算的神經(jīng)網(wǎng)絡(luò)及集成方法研究[D];中國礦業(yè)大學(xué);2015年

7 王衛(wèi)蘋;復(fù)雜網(wǎng)絡(luò)幾類同步控制策略研究及穩(wěn)定性分析[D];北京郵電大學(xué);2015年

8 張海軍;基于云計算的神經(jīng)網(wǎng)絡(luò)并行實現(xiàn)及其學(xué)習(xí)方法研究[D];華南理工大學(xué);2015年

9 李艷晴;風(fēng)速時間序列預(yù)測算法研究[D];北京科技大學(xué);2016年

10 曾U喺,

本文編號:2253545


資料下載
論文發(fā)表

本文鏈接:http://www.lk138.cn/kejilunwen/dianzigongchenglunwen/2253545.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶3909c***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com