中国韩国日本在线观看免费,A级尤物一区,日韩精品一二三区无码,欧美日韩少妇色

當(dāng)前位置:主頁 > 科技論文 > 路橋論文 >

深埋隧道圍巖脆性破裂的微震監(jiān)測及巖爆解譯與預(yù)警研究

發(fā)布時(shí)間:2019-07-03 15:22
【摘要】:一系列中國西部重大典型工程項(xiàng)目的相繼投入和建設(shè)(如“川藏鐵路”、“川藏高速公路”、“泛亞鐵路網(wǎng)”等),促使了我國西部大型工程項(xiàng)目以較快的速度不斷發(fā)展,并產(chǎn)生了眾多的地下工程及隧道工程。并且,由于隧道工程建設(shè)面臨復(fù)雜的地形和地質(zhì)條件,往往使其具有“深埋長大”的特點(diǎn)。在隧道掘進(jìn)的卸荷作用下,高地應(yīng)力圍巖內(nèi)儲(chǔ)存的能量急劇釋放,致使巖體突然脫離圍巖,并伴有聲音和彈射等現(xiàn)象,這種現(xiàn)象被稱為巖爆。巖爆通常具有突發(fā)性、猛烈性和嚴(yán)重的破壞性,會(huì)給工程建設(shè)帶來嚴(yán)重安全隱患。微震監(jiān)測(Microseismic Monitoring)是一種針對巖體微破裂在空間發(fā)育的監(jiān)測技術(shù)。該項(xiàng)技術(shù)可用于采集隧道圍巖破裂產(chǎn)生的地震波,再利用波形分析獲取微震事件的時(shí)間、位置以及震源強(qiáng)度等信息。通過對一定區(qū)域內(nèi)微震事件及發(fā)育速率的捕獲,微震監(jiān)測可以在地下工程巖爆預(yù)警上發(fā)揮重要作用。然而,目前應(yīng)用于深埋隧道圍巖的微震監(jiān)測精度還有待提高,包括了震源位置的定位精度以及受震源位置影響的震源參數(shù)的精度。此外,利用微震信息深入理解巖爆的孕育過程和機(jī)理是實(shí)現(xiàn)對隧道圍巖巖爆災(zāi)害有效預(yù)警的關(guān)鍵,即利用微震信息解譯巖爆的發(fā)育過程并提高對其預(yù)測預(yù)警的有效性還需要進(jìn)行更加深入的研究;诖,本文從“震源定位技術(shù)”、“微震監(jiān)測分析”和“巖體力學(xué)模擬”三種研究角度,即將“地震波動(dòng)分析”與“巖體力學(xué)分析”相結(jié)合,以工程實(shí)例中的“深埋隧道圍巖”為研究對象,開展了巖體脆性破裂及巖爆發(fā)育過程的模擬與解譯研究。在此基礎(chǔ)上,建立隧道掘進(jìn)的巖爆預(yù)警方法,并結(jié)合工程實(shí)例闡述了此預(yù)警方法的實(shí)施流程,最終目的為實(shí)現(xiàn)對巖爆過程的合理解譯與有效預(yù)警。通過研究,獲得了如下主要成果和認(rèn)識:(1)針對深埋隧道圍巖破裂的微震監(jiān)測,通過對微震監(jiān)測系統(tǒng)的布置方案、巖體波速確定和現(xiàn)場濾噪方法的研究,構(gòu)建了一套適用于交通隧道施工的移動(dòng)式微震監(jiān)測系統(tǒng),實(shí)現(xiàn)了對隧道圍巖微震活動(dòng)的動(dòng)態(tài)連續(xù)監(jiān)測。(2)為提高隧道圍巖微震事件的定位精度,在傳統(tǒng)的震源定位方法中引入地震波類型判識、隧道圍巖波速模型和殘差計(jì)算準(zhǔn)則,建立了隧道圍巖的震源定位方法。對于隧道圍巖的波速模型,考慮穿越隧道挖空段的洞壁面波傳播效應(yīng),通過獲取不同巖體泊松比情況下的面波與體波速度的比值,建立了基于傳播路徑的波速修正公式。在對已知位置人工爆破事件和未知位置微震事件的定位應(yīng)用中,隧道圍巖的震源定位方法獲取了比傳統(tǒng)定位方法精度更高的定位結(jié)果;在對傳感器陣列布置方案影響定位精度的探討中,雙洞三斷面交錯(cuò)布置方案獲取了最合理的隧道圍巖殘差空間(最小的殘差值和最合理的殘差分布)以及精度最高的震源定位結(jié)果。(3)通過對典型隧道工程圍巖微震震源參數(shù)分析和微震事件分類研究,從微震監(jiān)測角度解譯了巖爆的發(fā)育過程。米倉山隧道K49+920 K49+840巖爆段微震事件可在Log地震能量 Log地震矩空間中分為六個(gè)類型,并對應(yīng)巖爆過程的能量積累、能量轉(zhuǎn)移和能量釋放階段;錦屏二級水電站引水隧洞和輔助洞巖爆段微震事件可在視應(yīng)力 Log地震矩空間中分為三個(gè)類型。根據(jù)矩張量反演及成份分解的結(jié)果,米倉山隧道巖爆段出現(xiàn)了大量的張拉破裂事件及相對較少的剪切破裂事件(包含張剪和壓剪)。根據(jù)矩張量的雙力偶分量,判識出圍巖內(nèi)具有兩組明顯發(fā)育趨勢的滑移斷裂面,并獲得其方位及組合關(guān)系。(4)為使數(shù)值模型能反映實(shí)際巖體的脆性破裂機(jī)理及伴隨產(chǎn)生的微震事件,搭建了聯(lián)系兩者的橋梁,即硬巖的脆性破裂模型。首先,基于粘結(jié)顆粒模型引入脆性指標(biāo)對脆性破裂過程進(jìn)行評估(儲(chǔ)能系數(shù)、脆性系數(shù)和顆粒沖擊動(dòng)能),提出了反映巖石脆性破裂的微觀參數(shù)調(diào)控原則。模擬巖樣的各類力學(xué)試驗(yàn)(單軸壓縮、三軸加卸載、真三軸加載)結(jié)果表明,脆性破裂過程具有特殊的破裂特征和能量演化規(guī)律:應(yīng)力應(yīng)變曲線呈現(xiàn)較高的變形模量,無明顯的屈服階段,以及迅速的應(yīng)力跌落;一系列的連鎖微破裂在峰后應(yīng)力階段的集中發(fā)生,使模擬巖樣在較小應(yīng)變時(shí)出現(xiàn)破裂的貫通,并產(chǎn)生呈“爆發(fā)式”增長的顆粒沖擊動(dòng)能;耗散能在峰后應(yīng)力階段急劇增加。其次,引入破裂源評估指標(biāo)(破裂驅(qū)動(dòng)力和應(yīng)力降)量化破裂源的動(dòng)力性質(zhì),并實(shí)現(xiàn)巖石破裂聲發(fā)射事件及效應(yīng)的模擬。最后,提出并組建ACDC-SRM-UJRM方法,實(shí)現(xiàn)了工程對象(宏觀尺寸)仿真脆性巖體模型的建立,并闡述了其運(yùn)轉(zhuǎn)過程。(5)為解譯和評估巖爆的發(fā)育過程及微震事件特征,建立了基于微震特征的巖體脆性破裂模擬方法。反饋于巖體脆性破裂模擬的震源信息可分為三類:震源參數(shù)、應(yīng)力場方位和破裂機(jī)理。對紫荊隧道K13+670 K13+770段圍巖脆性破裂進(jìn)行了分析,并采用兩種參數(shù)方案對比脆性和塑性圍巖導(dǎo)致的不同破裂過程、微震事件分布及應(yīng)力場演化。對米倉山隧道K49+920 K49+860段巖爆的分析表明,在巖爆過程中應(yīng)力場各分量經(jīng)歷了分化、急增和陡降;體積應(yīng)變經(jīng)歷了降低、輕微回彈和猛烈回彈。相關(guān)指標(biāo)能較好的解譯巖爆的發(fā)育過程及微震事件簇的力學(xué)效應(yīng),為預(yù)警巖爆提供了可能。(6)從微震監(jiān)測分析和基于微震特征的巖體脆性破裂模擬兩方面,對巖爆過程進(jìn)行綜合解譯和判識,并以此為依據(jù)建立了基于巖爆孕育過程的隧道巖爆預(yù)警方法。以米倉山隧道左洞微震監(jiān)測段K50+250 K50+180開展工程實(shí)例分析。在K50+230 K50+200段圍巖開挖后,微震事件簇中出現(xiàn)了變形驅(qū)動(dòng)型事件,體積應(yīng)變出現(xiàn)回彈,動(dòng)能出現(xiàn)抬升;對下一階段開挖的模擬預(yù)測表明,此區(qū)域?qū)l(fā)生破裂失穩(wěn),應(yīng)對潛在巖爆進(jìn)行預(yù)警。隨后在K50+200 K50+180段圍巖開挖中,巖爆發(fā)生在滯后樁號K50+210,證實(shí)了隧道掘進(jìn)巖爆預(yù)警方法的有效性。
[Abstract]:The successive input and construction of a series of major typical engineering projects in western China (such as "Sichuan-Tibet Railway", "Sichuan-Tibet Expressway", "Trans-Asian Railway Network", etc.) have led to the rapid development of large-scale engineering projects in the west of China at a higher speed, and produced numerous underground engineering and tunnel projects. Moreover, because the tunnel construction is faced with complex terrain and geological conditions, it is often the characteristic of the "deep-buried growth". Under the unloading of the tunnel, the energy stored in the high-stress surrounding rock is rapidly released, so that the rock mass is suddenly separated from the surrounding rock and accompanied by the phenomena of sound and ejection, which is known as the rock burst. The rock burst usually has sudden, violent and serious damage, which can cause serious safety hazard to the project construction. Microseismic monitoring is a monitoring technique for microfracture of rock mass in space. The technique can be used to collect the seismic wave generated by the rupture of the surrounding rock of the tunnel, and then use the waveform analysis to obtain the information of the time, the position and the intensity of the source of the microseismic event. The microseismic monitoring can play an important role in the early warning of rockburst in underground engineering through the capture of microseismic event and development rate in a certain area. However, the accuracy of the micro-seismic monitoring applied to the surrounding rock of the deep-buried tunnel is still to be improved, including the positioning accuracy of the location of the source and the accuracy of the source parameter affected by the location of the source. In addition, in-depth understanding of the inoculation process and mechanism of the rock burst by using the micro-seismic information is the key to the effective early warning of the rock burst disaster of the tunnel surrounding rock, that is, the development process of the rock burst is interpreted by using the micro-seismic information and the effectiveness of the prediction and early warning is improved. On the basis of this, from the three research angles of "source location technology", "microseismic monitoring and analysis" and "mechanical simulation of rock mass", the "seismic wave analysis" and the "mechanical analysis of rock mass" are combined, and the "deep-buried tunnel surrounding rock" of the engineering example is the research object, and the simulation and interpretation of the brittle fracture and the rock burst development process of the rock mass are carried out. On this basis, the method of rock burst early warning for tunnel excavation is set up, and the implementation process of the early warning method is described in combination with the engineering examples, and the final purpose is to realize the reasonable interpretation and effective early warning of the rock burst process. Through the research, the following main results and the recognition are obtained: (1) The micro-seismic monitoring of the surrounding rock of the deep-buried tunnel is carried out, the arrangement scheme of the micro-seismic monitoring system, the determination of the wave velocity of the rock mass and the on-site noise filtering method are studied, A set of mobile micro-vibration monitoring system, which is suitable for the construction of traffic tunnel, is constructed, and the dynamic and continuous monitoring of the micro-seismic activity of the surrounding rock of the tunnel is realized. (2) In order to improve the positioning accuracy of the micro-seismic event of the tunnel surrounding rock, the seismic wave type identification, the tunnel surrounding rock wave velocity model and the residual calculation criterion are introduced in the traditional source location method, and the source positioning method of the tunnel surrounding rock is established. For the wave velocity model of the tunnel surrounding rock, the wave velocity correction formula based on the propagation path is established by taking into consideration the wave propagation effect of the hole wall surface wave passing through the hollow section of the tunnel, and by obtaining the ratio of the surface wave and the body wave velocity in the case of the Poisson's ratio of the different rock mass. in the method for positioning a known position manual blasting event and an unknown position micro-earthquake event, the source positioning method of the tunnel surrounding rock obtains a positioning result which is higher than that of the traditional positioning method, The two-hole three-section staggered arrangement scheme obtains the most reasonable residual space of the tunnel surrounding rock (the minimum residual value and the most reasonable residual distribution) and the highest accuracy of the source positioning result. (3) The development process of the rock burst is interpreted from the micro-seismic monitoring angle through the analysis of the micro-seismic source parameter and the micro-seismic event classification of the surrounding rock of the typical tunnel engineering. The microseismic event of the K49 + 920 K49 + 840 rock burst in the Mbin Mountain Tunnel can be divided into six types in the Log seismic energy Log seismic moment space and corresponding to the energy accumulation, energy transfer and energy release phase of the rock burst process; The micro-seismic event of the diversion tunnel and the auxiliary tunnel in Jinping II Hydropower Station can be divided into three types in the visual stress Log seismic moment space. Based on the results of the inversion of the moment tensor and the decomposition of the components, a large number of tension fracture events and relatively few shear fracture events (including shear and compression shear) occurred in the rock burst section of the Miangshan tunnel. According to the two-force couple component of the moment tensor, the slip fracture surface with two obvious development trends in the surrounding rock is identified, and the orientation and the combination relation are obtained. (4) In order to make the numerical model reflect the brittle fracture mechanism of the actual rock mass and the microseismic event, the brittle fracture model of the hard rock is set up. First, the brittle fracture process is evaluated (energy storage coefficient, brittleness coefficient and particle impact kinetic energy) based on the bonding particle model, and the micro-parameter regulation principle that reflects the brittle fracture of the rock is put forward. The results of various mechanical tests (single-axis compression, three-axis loading and unloading, true triaxial loading) of the simulated rock sample show that the brittle fracture process has special fracture characteristics and energy evolution rule: the stress-strain curve exhibits a high deformation modulus, no obvious yield phase, And a series of chain microfracture is concentrated in the post-peak stress stage, so that the simulated rock sample is broken through the small strain, and the particle impact kinetic energy in the "burst" growth is generated; and the dissipation can be rapidly increased at the post-peak stress stage. Secondly, the dynamic property of the fracture source is quantified by introducing the fracture source evaluation index (the fracture driving force and the stress drop), and the simulation of the acoustic emission events and effects of the rock crack is realized. Finally, the method of ACDC-SRM-UJRM is put forward and an ACDC-SRM-UJRM method is put forward, and the establishment of the brittle rock mass model of the engineering object (macro-size) is realized, and the operation process is described. (5) In order to interpret and evaluate the development of rock burst and the characteristics of microseismic events, a method for simulating the brittle fracture of rock mass based on microseismic characteristics is established. The seismic source information fed back to the brittle fracture simulation of the rock mass can be divided into three types: source parameter, stress field orientation and fracture mechanism. The brittle fracture of the surrounding rock of the K13 + 670K13 + 770 section of the Bauhinia tunnel is analyzed, and two parameters are used to compare the fracture process, the microseismic event distribution and the stress field evolution caused by the brittle and plastic surrounding rock. The analysis of the rock burst in the K49 + 920 K49 + 860 section of the Miangshan Tunnel shows that the stress field in the rock burst process has experienced the differentiation, the sharp increase and the steep drop, the volume strain experienced a decrease, a slight rebound and a violent rebound. The related indexes can better interpret the development process of the rock burst and the mechanical effect of the microseismic event cluster, and provide the possibility for the early-warning rock burst. (6) Based on the analysis of microseismic monitoring and the simulation of the brittle fracture of the rock mass based on the microseismic characteristics, the rock burst process is comprehensively interpreted and recognized, and the early warning method of the tunnel rock burst based on the rock burst inoculation process is established. The engineering example analysis is carried out in the left-hole micro-vibration monitoring section K50 + 250K50 + 180 in the Miangshan tunnel. After the surrounding rock of K50 + 230K50 + 200 section is excavated, a deformation driving type event occurs in the microseismic event cluster, the volume strain is spring-back, and the kinetic energy is raised; and the simulation prediction of the next phase excavation indicates that the region will crack and unstable and the potential rock burst shall be pre-warning. Then, in the surrounding rock excavation of the K50 + 200 K50 + 180 section, the rock burst occurred in the lagging pile No. K50 + 210, which confirmed the effectiveness of the method for early warning of the rock burst in the tunnel.
【學(xué)位授予單位】:成都理工大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:U456;U451.2

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 馬春馳;李天斌;陳國慶;陳子全;;硬脆巖石的微觀顆粒模型及其卸荷巖爆效應(yīng)研究[J];巖石力學(xué)與工程學(xué)報(bào);2015年02期

2 李楠;王恩元;GE Maochen;孫珍玉;李保林;;基于到時(shí)差值的微震波異常信號識別方法[J];巖石力學(xué)與工程學(xué)報(bào);2014年08期

3 明華軍;馮夏庭;張傳慶;肖亞勛;;基于微震信息的硬巖新生破裂面方位特征矩張量分析[J];巖土力學(xué);2013年06期

4 明華軍;馮夏庭;陳炳瑞;張傳慶;;基于矩張量的深埋隧洞巖爆機(jī)制分析[J];巖土力學(xué);2013年01期

5 付金偉;朱維申;王向剛;薛偉強(qiáng);;節(jié)理巖體裂隙擴(kuò)展過程一種新改進(jìn)的彈脆性模擬方法及應(yīng)用[J];巖石力學(xué)與工程學(xué)報(bào);2012年10期

6 馮夏庭;張傳慶;陳炳瑞;豐光亮;趙周能;明華軍;肖亞勛;段淑倩;周輝;;巖爆孕育過程的動(dòng)態(tài)調(diào)控[J];巖石力學(xué)與工程學(xué)報(bào);2012年10期

7 于永江;王大國;李強(qiáng);宋力;張春會(huì);;煤巖體的彈塑脆性本構(gòu)模型及其數(shù)值試驗(yàn)[J];煤炭學(xué)報(bào);2012年04期

8 陳炳瑞;馮夏庭;明華軍;周輝;曾雄輝;豐光亮;肖亞勛;;深埋隧洞巖爆孕育規(guī)律與機(jī)制:時(shí)滯型巖爆[J];巖石力學(xué)與工程學(xué)報(bào);2012年03期

9 陳益峰;李典慶;榮冠;姜清輝;周創(chuàng)兵;;脆性巖石損傷與熱傳導(dǎo)特性的細(xì)觀力學(xué)模型[J];巖石力學(xué)與工程學(xué)報(bào);2011年10期

10 董隴軍;李夕兵;唐禮忠;宮鳳強(qiáng);;無需預(yù)先測速的微震震源定位的數(shù)學(xué)形式及震源參數(shù)確定[J];巖石力學(xué)與工程學(xué)報(bào);2011年10期

相關(guān)博士學(xué)位論文 前2條

1 李楠;微震震源定位的關(guān)鍵因素作用機(jī)制及可靠性研究[D];中國礦業(yè)大學(xué);2014年

2 徐奴文;高陡巖質(zhì)邊坡微震監(jiān)測與穩(wěn)定性分析研究[D];大連理工大學(xué);2011年

,

本文編號:2509489

資料下載
論文發(fā)表

本文鏈接:http://www.lk138.cn/kejilunwen/daoluqiaoliang/2509489.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶efce4***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請E-mail郵箱bigeng88@qq.com